Reaction-diffusion waves in biology.

The theory of reaction-diffusion waves begins in the 1930s with the works in population dynamics, combustion theory and chemical kinetics. At the present time, it is a well developed area of research which includes qualitative properties of travelling waves for the scalar reaction-diffusion equation and for system of equations, complex nonlinear dynamics, numerous applications in physics, chemistry, biology, medicine. This paper reviews biological applications of reaction-diffusion waves.

[1]  Shigui Ruan,et al.  Spatial-Temporal Dynamics in Nonlocal Epidemiological Models , 2007 .

[2]  O. Debeir,et al.  Quantitative Analysis of Melanocyte Migration in vitro Based on Automated Cell Tracking under Phase Contrast Microscopy Considering the Combined Influence of Cell Division and Cell-Matrix Interactions , 2010 .

[3]  Chunhua Ou,et al.  Traveling Wavefronts in a Delayed Food-limited Population Model , 2007, SIAM J. Math. Anal..

[4]  Sergei Petrovskii,et al.  Critical phenomena in plankton communities: KISS model revisited , 2000 .

[5]  Sergei Petrovskii,et al.  Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. , 2006, Journal of theoretical biology.

[6]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[7]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[8]  M. Mackey,et al.  Observations on the Pathophysiology and Mechanisms for Cyclic Neutropenia , 2006 .

[9]  Simon A. Levin,et al.  The Spread of a Reinvading Species: Range Expansion in the California Sea Otter , 1988, The American Naturalist.

[10]  Mikhail A. Panteleev,et al.  Blood Coagulation and Propagation of Autowaves in Flow , 2006, Pathophysiology of Haemostasis and Thrombosis.

[11]  E. N. Dancer,et al.  On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions , 2007, 0707.1771.

[12]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[13]  Avner Friedman,et al.  Bifurcation From Stability to Instability for a Free Boundary Problem Arising in a Tumor Model , 2006 .

[14]  David M. Umulis,et al.  The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. , 2009, Mathematical modelling of natural phenomena.

[15]  Jonathan A. Sherratt,et al.  Periodic travelling waves in cyclic predator–prey systems , 2001 .

[16]  J. B. Zeldowitsch,et al.  A Theory of Thermal Propagation of Flame , 1988 .

[17]  Hans G. Kaper,et al.  Bifurcation of Pulsating and Spinning Reaction Fronts in Condensed Two-Phase Combustion , 1984 .

[18]  K. Kawasaki,et al.  The effects of interference competition on stability, structure and invasion of a multi-species system , 1984, Journal of mathematical biology.

[19]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[20]  V. Volpert,et al.  Travelling Waves for Integro-differential Equations , 2009 .

[21]  A. Friedman,et al.  Free Boundary Problems Associated with Multiscale Tumor Models , 2009 .

[22]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[23]  H. Meinhardt Models of biological pattern formation , 1982 .

[24]  Jingxue Yin,et al.  Travelling waves for a biological reaction diffusion model with spatio-temporal delay☆ , 2007 .

[25]  Philip K Maini,et al.  Mixed-mode pattern in Doublefoot mutant mouse limb--Turing reaction-diffusion model on a growing domain during limb development. , 2006, Journal of theoretical biology.

[26]  K. Painter,et al.  Stippling the Skin: Generation of Anatomical Periodicity by Reaction-Diffusion Mechanisms , 2009 .

[27]  A. Ducrot Travelling wave solutions for a scalar age-structured equation , 2006 .

[28]  Sergei Petrovskii,et al.  Regimes of biological invasion in a predator-prey system with the Allee effect , 2005, Bulletin of mathematical biology.

[29]  Vitaly Volpert,et al.  Spatial structures and generalized travelling waves for an integro-differential equation , 2010 .

[30]  Sergei Petrovskii,et al.  Dynamical stabilization of an unstable equilibrium in chemical and biological systems , 2002 .

[31]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[32]  V. M. Kenkre,et al.  Spatiotemporal patterns in the Hantavirus infection. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[34]  S. Ullrich,et al.  Analysis of cellular interactions in density-dependent inhibition of 3T3 Cell proliferation , 2004, Biophysics of structure and mechanism.

[35]  V. M. Kenkre,et al.  Traveling waves of infection in the hantavirus epidemics , 2002, Bulletin of mathematical biology.

[36]  Mikhail A. Panteleev,et al.  On Propagation of Excitation Waves in Moving Media: The FitzHugh-Nagumo Model , 2009, PloS one.

[37]  M A Lewis,et al.  Ecological chaos in the wake of invasion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Gregory I. Sivashinsky,et al.  PROPAGATION OF A PULSATING REACTION FRONT IN SOLID FUEL COMBUSTION , 1978 .

[39]  V. Volpert,et al.  The effect of convection on a propagating front with a liquid product: Comparison of theory and experiments. , 1998, Chaos.

[40]  K. P. Hadeler,et al.  Travelling fronts in nonlinear diffusion equations , 1975 .

[41]  O. Diekmann,et al.  UvA-DARE ( Digital Academic Repository ) Can a species keep pace with a shifting climate ? , 2009 .

[42]  Alexander N Gorban,et al.  Selection Theorem for Systems with Inheritance , 2004, Mathematical Modelling of Natural Phenomena.

[43]  D. Pontier,et al.  Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  István Szalai,et al.  An Experimental Design Method Leading to Chemical Turing Patterns , 2009, Science.

[45]  I. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics , 1998 .

[46]  Vasudev M. Kenkre,et al.  Analytical Considerations in the Study of Spatial Patterns Arising from Nonlocal Interaction Effects , 2004 .

[47]  Martin J Graves,et al.  Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. , 2006, Journal of biomechanics.

[48]  S. Petrovskii,et al.  Spatiotemporal patterns in ecology and epidemiology : theory, models, and simulation , 2007 .

[49]  F. Hilker,et al.  Patterns of Patchy Spread in Deterministic and Stochastic Models of Biological Invasion and Biological Control , 2005, Biological Invasions.

[50]  V. Volpert,et al.  New effects in propagation of waves for reaction–diffusion systems , 2004 .

[51]  N. Shigesada,et al.  Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species , 2001 .

[52]  Vitaly Volpert,et al.  Atherosclerosis Initiation Modeled as an Inflammatory Process , 2007 .

[53]  Gregory I. Sivashinsky,et al.  Diffusional-Thermal Theory of Cellular Flames , 1977 .

[54]  Sergei Petrovskii,et al.  Allee effect makes possible patchy invasion in a predator-prey system. , 2002 .

[55]  Yoh Iwasa,et al.  Mathematics for Life Science and Medicine , 2009 .

[56]  H. McKean Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov , 1975 .

[57]  V. M. Kenkre,et al.  Applicability of the Fisher equation to bacterial population dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  G. M. Makhviladze,et al.  The Mathematical Theory of Combustion and Explosions , 2011 .

[59]  Hans F. Weinberger,et al.  Long-Time Behavior of a Class of Biological Models , 1982 .

[60]  S. A. Gourley Travelling front solutions of a nonlocal Fisher equation , 2000, Journal of mathematical biology.

[61]  V. Volpert,et al.  TRAVELLING CALCIUM WAVES IN SYSTEMS WITH NON-DIFFUSING BUFFERS , 2008 .

[62]  Michel Langlais,et al.  A diffusive SI model with Allee effect and application to FIV. , 2007, Mathematical biosciences.

[63]  V. Volpert,et al.  Competition of Species with Intra-Specific Competition , 2008 .

[64]  Shangbing Ai,et al.  Traveling wave fronts for generalized Fisher equations with spatio-temporal delays , 2007 .

[65]  Hiroshi Matano,et al.  Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit , 2006, Networks Heterog. Media.

[66]  D. A. Larson Transient Bounds and Time-Asymptotic Behavior of Solutions to Nonlinear Equations of Fisher Type , 1978 .

[67]  R. Ferrière,et al.  Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. , 2006, Theoretical population biology.

[68]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[69]  Wan-Tong Li,et al.  Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays , 2006 .

[70]  V. I. Zarnitsina,et al.  Dynamics of spatially nonuniform patterning in the model of blood coagulation. , 2001, Chaos.

[71]  Bath Ba SPATIAL STRUCTURES AND PERIODIC TRAVELLING WAVES IN AN INTEGRO-DIFFERENTIAL REACTION-DIFFUSION POPULATION MODEL* , 1990 .

[72]  B. Perthame Transport Equations in Biology , 2006 .

[73]  A. Filonenko,et al.  Flame propagation in the presence of two successive gas-phase reactions , 1968 .

[74]  R. Lefever,et al.  On the origin of tiger bush , 1997 .

[75]  X. Zou,et al.  Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation , 2006 .

[76]  V. Volpert,et al.  Generalized travelling waves for perturbed monotone reaction-diffusion systems , 2001 .

[77]  Vitaly Volpert,et al.  Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources , 2006 .

[78]  H. Engel Chemical Chaos , 1995 .

[79]  D. Hilhorst,et al.  Singular Limit of a Spatially Inhomogeneous Lotka–Volterra Competition–Diffusion System , 2007 .

[80]  James Sneyd,et al.  On the Propagation of Calcium Waves in an Inhomogeneous Medium , 1997, SIAM J. Appl. Math..

[81]  B. Gustafsson,et al.  Conformal and Potential Analysis in Hele-Shaw Cells , 2006 .

[82]  P. Maini,et al.  Reaction and diffusion on growing domains: Scenarios for robust pattern formation , 1999, Bulletin of mathematical biology.

[83]  Bai-lian Li,et al.  Exactly Solvable Models of Biological Invasion , 2005 .

[84]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[85]  David E. Clapham,et al.  Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes , 1992, Cell.

[86]  A. Merzhanov,et al.  Propagation of a pulsating exothermic reaction front in the condensed phase , 1971 .

[87]  P. Maini,et al.  Turing instabilities in general systems , 2000, Journal of mathematical biology.

[88]  V. Volpert,et al.  Existence of Waves for a Nonlocal Reaction-Diffusion Equation , 2010 .

[89]  V. Volpert,et al.  Frontal photopolymerization with convection , 2003 .

[90]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[91]  M. Kot,et al.  Discrete-time growth-dispersal models , 1986 .

[92]  L. Ec,et al.  Typical Atherosclerotic Plaque Morphology Produced in Silico by an Atherogenesis Model Based on Self-Perpetuating Propagating Macrophage Recruitment , 2007 .

[93]  Roeland M. H. Merks,et al.  Morphogenesis of the branching reef coral Madracis mirabilis , 2005, Proceedings of the Royal Society B: Biological Sciences.

[94]  V. Volpert,et al.  Mathematical modelling of atherosclerosis as an inflammatory disease , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[95]  J. Sherratt,et al.  Comparison theorems and variable speed waves for a scalar reaction–diffusion equation , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[96]  Di Wei,et al.  Analysis on the critical speed of traveling waves , 2007, Appl. Math. Lett..

[97]  Biological modelling / Biomodélisation Adaptive dynamics: modelling Darwin's divergence principle , 2006 .

[98]  Sergei Petrovskii,et al.  Oscillations and waves in a virally infected plankton system. Part I: The lysogenic stage , 2004 .

[99]  Jonathan A. Sherratt,et al.  Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? , 1997 .

[100]  G. Makhviladze,et al.  Two-dimensional stability of the combustion of condensed systems , 1971 .

[101]  S. Petrovskii,et al.  Some exact solutions of a generalized Fisher equation related to the problem of biological invasion. , 2001, Mathematical biosciences.

[102]  M A Fuentes,et al.  Nonlocal interaction effects on pattern formation in population dynamics. , 2003, Physical review letters.

[103]  Y. Suhov,et al.  Stationary solutions of non-autonomous Kolmogorov–Petrovsky–Piskunov equations , 1999, Ergodic Theory and Dynamical Systems.

[104]  M G Clerc,et al.  Patterns and localized structures in population dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  R. Ross Atherosclerosis is an inflammatory disease , 1999 .

[106]  S. Petrovskii On the plankton front waves accelerated by marine turbulence , 1999 .

[107]  Memory Formalism, Nonlinear Techniques, and Kinetic Equation Approaches , 2003 .

[108]  Jonathan H. Gillard,et al.  How Critical Is Fibrous Cap Thickness to Carotid Plaque Stability?: A Flow–Plaque Interaction Model , 2006, Stroke.

[109]  Fabien Crauste,et al.  Dynamics of Erythroid Progenitors and Erythroleukemia , 2009 .

[110]  V. M. Kenkre,et al.  Periodically varying externally imposed environmental effects on population dynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[112]  Mark Kot,et al.  Elements of Mathematical Ecology: Frontmatter , 2001 .

[113]  N. Bessonov Dynamical Models of Plant Growth , 2006 .

[114]  V. M. Kenkre,et al.  Nonlinearity in bacterial population dynamics: Proposal for experiments for the observation of abrupt transitions in patches , 2008, Proceedings of the National Academy of Sciences.

[115]  Benoît Perthame,et al.  Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit , 2007 .

[116]  N. Shigesada,et al.  Traveling periodic waves in heterogeneous environments , 1986 .

[117]  V. Quaranta,et al.  Modelling of Cancer Growth, Evolution and Invasion: Bridging Scales and Models , 2007 .

[118]  F. Rothe Convergence to travelling fronts in semilinear parabolic equations , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[119]  M. Berridge,et al.  Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature reviews. Molecular cell biology.

[120]  V. I. Sarbash,et al.  A new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation , 2002 .

[121]  Arnaud Ducrot,et al.  On a Model of Leukemia Development with a Spatial Cell Distribution , 2007 .

[122]  Vitaly Volpert,et al.  Mathematical model of evolutionary branching , 2009, Math. Comput. Model..

[123]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[124]  B. Perthame,et al.  The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. , 2005, Theoretical population biology.

[125]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .