A weight function-critical plane approach for low-cycle fatigue under variable amplitude multiaxial loading

Low-cycle fatigue data of type 304 stainless steel obtained under axial-torsional loading of variable amplitudes are analyzed using four multiaxial fatigue parameters: SWT, KBM, FS and LKN. Rainflow cycle counting and Morrow's plastic work interaction rule are used to calculate fatigue damage. The performance of a fatigue model is dependent on the fatigue parameter, the critical plane and the damage accumulation rule employed in the model. The conservatism and non-conservatism of predicted lives are examined for some combinations of these variables. A new critical plane called the weight function-critical plane is introduced for variable amplitude loading. This approach is found to improve the KBM-based life predictions.

[1]  Ji-Ho Song,et al.  Estimation methods for strain-life fatigue properties from hardness , 2006 .

[2]  K. M. Golos,et al.  Cumulative fatigue damage , 1988 .

[3]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[4]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 2: Comparison With Experimental Results , 1996 .

[5]  Chun H. Wang,et al.  A PATH-INDEPENDENT PARAMETER FOR FATIGUE UNDER PROPORTIONAL AND NON-PROPORTIONAL LOADING , 1993 .

[6]  K. S. Kim,et al.  fatigue analysis under variable amplitude loading using an energy parameter , 2003 .

[7]  D. S. Tchankov,et al.  Fatigue life prediction under random loading using total hysteresis energy , 1998 .

[8]  Calculation of the elastic–plastic strain energy density under cyclic and random loading , 2001 .

[9]  Soon-Bok Lee,et al.  Stochastic modelling of low-cycle fatigue damage in 316L stainless steel under variable multiaxial loading , 2000 .

[10]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories , 1996 .

[11]  Tadeusz Lagoda,et al.  Energy models for fatigue life estimation under uniaxial random loading. Part I: The model elaboration , 2001 .

[12]  Andrea Carpinteri,et al.  Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method , 1999 .

[13]  Ja Bannantine,et al.  A Multiaxial Fatigue Life Estimation Technique , 1992 .

[14]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[15]  K. Miller,et al.  Biaxial low-cycle fatigue failure of 316 stainless steel at elevated temperatures , 1982 .

[16]  Peter Kurath,et al.  EFFECT OF SELECTED SUBCYCLE SEQUENCES IN FATIGUE LOADING HISTORIES. , 1983 .

[17]  Tadeusz Lagoda,et al.  Energy models for fatigue life estimation under uniaxial random loading. Part II: Verification of the model , 2001 .

[18]  Ewald Macha,et al.  A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime , 1999 .

[19]  R. J. Anthes,et al.  Modified rainflow counting keeping the load sequence , 1997 .

[20]  W. N. Findley,et al.  THEORY FOR COMBINED BENDING AND TORSION FATIGUE WITH DATA FOR SAE 4340 STEEL. Technical Report No. 1 on BASIC RESEARCH ON FATIGUE FAILURES UNDER COMBINED STRESS , 1956 .

[21]  Thomas R. Chase,et al.  Multiaxial cycle counting for critical plane methods , 2003 .

[22]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .