Finding Pareto-Optimal Set by Merging Attractors for a Bi-objective Traveling Salesmen Problem

This paper presents a new search procedure to tackle multi-objective traveling salesman problem (TSP). This procedure constructs the solution at-tractor for each of the objectives respectively. Each attractor contains the best solutions found for the corresponding objective. Then, these attractors are merged to find the Pareto-optimal solutions. The goal of this procedure is not only to generate a set of Pareto-optimal solutions, but also to provide the infor-mation about these solutions that will allow a decision-maker to choose a good compromise solution.

[1]  I. Melamed,et al.  The linear convolution of criteria in the bicriteria traveling salesman problem , 1997 .

[2]  M. Ehrgott Approximation algorithms for combinatorial multicriteria optimization problems , 2000 .

[3]  A. R Warburton,et al.  Approximation methods for multiple criteria travelling salesman problems A Gupta, A Warburton , 1986 .

[4]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[5]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[6]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[7]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[8]  Michael Pilegaard Hansen Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.

[9]  Tong Heng Lee,et al.  Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[10]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[11]  Bryant A. Julstrom,et al.  On Weight-Biased Mutation for Graph Problems , 2002, PPSN.

[12]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[13]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[14]  I. Sigal Algorithms for solving the two-criterion large-scale travelling salesman problem , 1994 .

[15]  Lishan Kang,et al.  A New MOEA for Multi-objective TSP and Its Convergence Property Analysis , 2003, EMO.

[16]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[17]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[18]  M. Mézard,et al.  A replica analysis of the travelling salesman problem , 1986 .

[19]  LI WEIQI,et al.  Attractor of Local Search Space in the Traveling Salesman Problem , 2022 .

[20]  Knut Richter,et al.  Solving a multiobjective traveling salesman problem by dynamic programming , 1982 .

[21]  Evripidis Bampis,et al.  A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem , 2004, Metaheuristics for Multiobjective Optimisation.

[22]  Michael Pilegaard Hansen,et al.  A Study of Global Convexity for a Multiple Objective Travelling Salesman Problem , 2002 .

[23]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.