A Field-Theoretic Approach to the Wiener Sausage

[1]  Angelika Mueller,et al.  Principles Of Random Walk , 2016 .

[2]  T. Tomé,et al.  Reaction-Diffusion Processes , 2015 .

[3]  Sotiris E. Pratsinis,et al.  Agglomerates and aggregates of nanoparticles made in the gas phase , 2014 .

[4]  N. Wschebor,et al.  Branching and annihilating random walks: exact results at low branching rate. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Gunnar Pruessner,et al.  The average avalanche size in the Manna Model and other models of self-organised criticality , 2012, 1208.2069.

[6]  Sergey N. Dorogovtsev,et al.  Lectures on Complex Networks , 2010 .

[7]  Peter V. E. McClintock,et al.  A modern approach to critical phenomena , 2009 .

[8]  André W. Visser,et al.  Motility of zooplankton: fitness, foraging and predation , 2007 .

[9]  A. Berezhkovskii,et al.  Number of distinct sites visited by a random walker trapped by an absorbing boundary. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  E. Bolthausen,et al.  On the volume of the intersection of two Wiener sausages , 2004 .

[11]  M. Doi,et al.  Second quantization representation for classical many-particle system , 2001 .

[12]  F. Wijland Field theory for reaction-diffusion processes with hard-core particles. , 2000, cond-mat/0010491.

[13]  H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states , 2000, cond-mat/0001070.

[14]  E. Bolthausen,et al.  Moderate deviations for the volume of the Wiener sausage , 2001, math/0103238.

[15]  Deepak Dhar,et al.  Studying Self-Organized Criticality with Exactly Solved Models , 1999, cond-mat/9909009.

[16]  A. Sznitman Brownian motion, obstacles, and random media , 1998 .

[17]  J. Cardy LETTER TO THE EDITOR: The number of incipient spanning clusters in two-dimensional percolation , 1997, cond-mat/9705137.

[18]  H. Hilhorst,et al.  Statistical properties of the set of sites visited by the two-dimensional random walk , 1997 .

[19]  J. Cardy,et al.  Renormalization group study of theA+B→⊘ diffusion-limited reaction , 1994, cond-mat/9412063.

[20]  Peter C. Jurs,et al.  Mathematica , 2019, J. Chem. Inf. Comput. Sci..

[21]  S. S. Manna Two-state model of self-organized criticality , 1991 .

[22]  A. M. Berezhkovskii,et al.  Wiener sausage volume moments , 1989 .

[23]  J. -. Gall,et al.  Sur la saucisse de Wiener et les points multiples du mouvement brownien , 1986 .

[24]  D. Torney Variance of the range of a random walk , 1986 .

[25]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[26]  L. Peliti Path integral approach to birth-death processes on a lattice , 1985 .

[27]  J. Hammersley Critical phenomena in semi-infinite systems , 1982, Journal of Applied Probability.

[28]  Srinivasa Varadhan,et al.  Asymptotics for the wiener sausage , 1975 .

[29]  T. Lubensky,et al.  Critical phenomena in semi-infinite systems. I.εexpansion for positive extrapolation length , 1975 .

[30]  M. Kac,et al.  Bose‐Einstein condensation in the presence of impurities. II , 1973 .

[31]  E. Montroll Random walks on lattices , 1969 .

[32]  F. Spitzer Electrostatic capacity, heat flow, and brownian motion , 1964 .