A scalable molecular-dynamics algorithm suite for materials simulations: design-space diagram on 1024 Cray T3E processors

Abstract A suite of scalable molecular-dynamics (MD) algorithms has been developed for materials simulations. The linear scaling MD algorithms encompass a wide spectrum of physical reality: (i) classical MD based on a many-body interatomic potential model; (ii) environment-dependent, variable-charge MD; (iii) quantum mechanical MD based on the tight-binding method; and (iv) self-consistent quantum MD based on the density functional theory. Benchmark tests on 1024 Cray T3E processors including 1.02-billion-atom many-body and 22 500-atom density functional MD simulations demonstrate that these algorithms are highly scalable. A design-space diagram spanning seven decades of system size and computational time is constructed for materials scientists to design an optimal MD simulation incorporating maximal physical realism within a given computational budget.

[1]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[2]  PRIYA VASHISHTA,et al.  Large-scale atomistic simulations of dynamic fracture , 1989, Comput. Sci. Eng..

[3]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[4]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[5]  Peter S. Lomdahl,et al.  Recent advances in large-scale atomistic materials simulations , 1999, Comput. Sci. Eng..

[6]  Paul Messina,et al.  Multimillion-atom molecular dynamics simulation of atomic level stresses in Si(111)/Si3N4(0001) nanopixels , 1998 .

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  Wu,et al.  Higher-order finite-difference pseudopotential method: An application to diatomic molecules. , 1994, Physical review. B, Condensed matter.

[9]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[10]  Frederick H. Streitz,et al.  Charge transfer and bonding in metallic oxides , 1994 .

[11]  Jerzy Bernholc,et al.  Computational Materials Science: The Era of Applied Quantum Mechanics , 1999 .

[12]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[13]  Aiichiro Nakano Multiresolution load balancing in curved space: the wavelet representation , 1999 .

[14]  A. J. Skinner,et al.  Generating Transferable Tight-Binding Parameters: Application to Silicon , 1989 .

[15]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[16]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[17]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[18]  Martin,et al.  Linear system-size scaling methods for electronic-structure calculations. , 1995, Physical review. B, Condensed matter.

[19]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[20]  Nakano,et al.  Stress domains in Si(111)/a-Si3N4 nanopixel: ten-million-atom molecular dynamics simulations on parallel computers , 2000, Physical review letters.

[21]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[22]  Daw Model for energetics of solids based on the density matrix. , 1993, Physical review. B, Condensed matter.

[23]  Aiichiro Nakano,et al.  Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics , 1997 .

[24]  Rajiv K. Kalia,et al.  Morphology of pores and interfaces and mechanical behavior of nanocluster-assembled silicon nitride ceramic , 1997 .

[25]  Fuyuki Shimojo,et al.  Atomic structure and charge transfer in liquid Rb-Te mixtures : An ab initio molecular-dynamics simulation , 1999 .

[26]  Aiichiro Nakano Fuzzy clustering approach to hierarchical molecular dynamics simulation of multiscale materials phenomena , 1997 .

[27]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[28]  Rajiv K. Kalia,et al.  Variable-charge interatomic potentials for molecular-dynamics simulations of TiO2 , 1999 .

[29]  A. Nakano,et al.  Multiresolution molecular dynamics algorithm for realistic materials modeling on parallel computers , 1994 .

[30]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[31]  Rajiv K. Kalia,et al.  Computer-aided design of high-temperature materials , 1999 .

[32]  Rajiv K. Kalia,et al.  Structural correlations and mechanical behavior in nanophase silica glasses , 1999 .

[33]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[34]  P. Vashishta,et al.  General Density Functional Theory , 1983 .

[35]  Aiichiro Nakano,et al.  A Rigid-Body-Based Multiple Time Scale Molecular Dynamics Simulation of Nanophase Materials , 1999, Int. J. High Perform. Comput. Appl..

[36]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[37]  Li,et al.  Amorphization and Fracture in Silicon Diselenide Nanowires: A Molecular Dynamics Study. , 1996, Physical review letters.

[38]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .

[39]  Rajiv K. Kalia,et al.  Role of Ultrafine Microstructures in Dynamic Fracture in Nanophase Silicon Nitride , 1997 .

[40]  Nakano,et al.  Dislocation emission at the Silicon/Silicon nitride interface: A million atom molecular dynamics simulation on parallel computers , 2000, Physical review letters.

[41]  Eduardo Hernández,et al.  Linear-scaling DFT-pseudopotential calculations on parallel computers , 1997 .

[42]  Galli,et al.  Large scale electronic structure calculations. , 1992, Physical review letters.

[43]  Farid F. Abraham,et al.  Portrait of a crack: rapid fracture mechanics using parallel molecular dynamics , 1997 .

[44]  Timothy Campbell,et al.  An Adaptive Curvilinear-Coordinate Approach to Dynamic Load Balancing of Parallel Multiresolution Molecular Dynamics , 1997, Parallel Comput..

[45]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[46]  Rajiv K. Kalia,et al.  Scalable molecular-dynamics, visualization, and data management algorithms for materials simulations , 1989, Comput. Sci. Eng..

[47]  Galli,et al.  Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. , 1994, Physical review. B, Condensed matter.

[48]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .