Mixed integer multi-objective optimization of composite structures with frequency-dependent interleaved viscoelastic damping layers

Multiobjective optimization is proposed to design laminate with viscoelastic layer.Maximizing modal damping and frequencies and minimizing mass is realized.Frequency-dependent viscoelastic material properties are considered.Mixed integer and real coding strategy is proposed to represent design variables.NSGA-II with parallel computation is used as optimization algorithm. The optimal design of composite structures with frequency-dependent interleaved viscoelastic damping layers is addressed in this paper. The design objective of simultaneously maximizing structural modal damping and frequency and minimizing weight is considered. The design problem is formulated as a mixed integer multi-objective optimization problem and solved by evolutionary algorithm. A layerwise finite element model is used. The Pareto-optimal solutions are obtained for two applications. The results show that the approach is quite useful in integrally designing such kind of composite structures. In particular, it is shown that the inserting position and the material type are two important design parameters.

[1]  Kevin L. Napolitano,et al.  A comparison of two cocured damped composite torsion shafts , 1998 .

[2]  G. Kress,et al.  Effect of the Thickness and Position of Soft Layers in Composite Laminates on the Bending Stiffness , 2013 .

[3]  J. B. Kosmatka,et al.  Embedding viscoelastic damping materials in low-cost VARTM composite structures , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[4]  Hualing Chen,et al.  A study on the damping characteristics of laminated composites with integral viscoelastic layers , 2006 .

[5]  R. A. S. Moreira,et al.  A layerwise model for thin soft core sandwich plates , 2006 .

[6]  C. M. Mota Soares,et al.  Multiobjective optimization of viscoelastic laminated sandwich structures using the Direct MultiSearch method , 2015 .

[7]  Yoshihiro Narita,et al.  Analysis and optimal design for the damping property of laminated viscoelastic plates under general edge conditions , 2013 .

[8]  Damping of Composite Tubes With Embedded Viscoelastic Layers , 1996 .

[9]  E. Carrera,et al.  A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates , 2013 .

[10]  Optimal design of frequency dependent three-layered rectangular composite beams for low mass and high damping , 2015 .

[11]  El Mostafa Daya,et al.  Review: Complex modes based numerical analysis of viscoelastic sandwich plates vibrations , 2011 .

[12]  M. Rao,et al.  Dynamic Analysis and Design of Laminated Composite Beams with Multiple Damping Layers , 1993 .

[13]  Ronald F. Gibson,et al.  Recent research on enhancement of damping in polymer composites , 1999 .

[14]  R. Radke A Matlab implementation of the Implicitly Restarted Arnoldi Method for solving large-scale eigenvalue problems , 1996 .

[15]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[16]  E. Carrera,et al.  Vibration Modeling of Multilayer Composite Structures with Viscoelastic Layers , 2015 .

[17]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[18]  Il-Kwon Oh,et al.  Damping Characteristics of Cylindrical Laminates with Viscoelastic Layer Considering Temperature- and Frequency-Dependence , 2008 .

[19]  Brian R. Mace,et al.  Estimation of the loss factor of viscoelastic laminated panels from finite element analysis , 2010 .

[20]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[21]  E. Verron,et al.  Simultaneous geometrical and material optimal design of hybrid elastomer/composite sandwich plates , 2011 .

[22]  Yao Koutsawa,et al.  A two-level procedure for the global optimization of the damping behavior of composite laminated plates with elastomer patches , 2015 .

[23]  Andris Chate,et al.  Finite element analysis of damping the vibrations of laminated composites , 1993 .

[24]  C. M. Mota Soares,et al.  Damping optimization of viscoelastic laminated sandwich composite structures , 2009 .

[25]  J. N. Reddy,et al.  Modelling of thick composites using a layerwise laminate theory , 1993 .

[26]  J. Berthelot,et al.  Damping Analysis of Unidirectional Glass Fiber Composites with Interleaved Viscoelastic Layers: Experimental Investigation and Discussion , 2006 .

[27]  Yao Koutsawa,et al.  Design of damping properties of hybrid laminates through a global optimisation strategy , 2012 .

[28]  M. A. Trindade,et al.  Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping , 2000 .

[29]  José Herskovits,et al.  Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates , 2010 .

[30]  Michael R. Haberman,et al.  Design of High Loss Viscoelastic Composites through Micromechanical Modeling and Decision Based Materials Design , 2007 .

[31]  T. Pritz Five-parameter fractional derivative model for polymeric damping materials , 2003 .

[32]  Lien-Wen Chen,et al.  Vibration and damping analysis of a three-layered composite annular plate with a viscoelastic mid-layer , 2002 .

[33]  Raghu Echempati,et al.  Dynamic analysis and damping of composite structures embedded with viscoelastic layers , 1997 .

[34]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[35]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .

[36]  George A. Lesieutre,et al.  A discrete layer beam finite element for the dynamic analysis of composite sandwich beams with integral damping layers , 1999 .

[37]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[38]  Chao Xu,et al.  Optimal design of viscoelastic damping structures using layerwise finite element analysis and multi-objective genetic algorithm , 2015 .

[39]  C. M. Mota Soares,et al.  Multiobjective design of viscoelastic laminated composite sandwich panels , 2015 .

[40]  R. A. DiTaranto,et al.  Composite Damping of Vibrating Sandwich Beams , 1967 .

[41]  R. A. S. Moreira,et al.  A generalized layerwise finite element for multi-layer damping treatments , 2006 .

[42]  Luís N. Vicente,et al.  Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..

[43]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[44]  Daniel J. Inman,et al.  Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping , 2013 .

[45]  G. C. Everstine,et al.  Vibrations of three layered damped sandwich plate composites , 1979 .

[46]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .