Location and Imaging of Moving Targets using Nonuniform Linear Antenna Array SAR

By using a linear antenna array, velocity synthetic aperture radar (VSAR) can detect, focus, and locate slowly moving targets well. However, it may mis-locate fast moving targets in the azimuth (cross-range) direction. In this correspondence, we propose a synthetic aperture radar (SAR) with a nonuniform linear antenna array and give a design of the antenna arrangement. It is shown that our proposed nonuniform linear antenna array SAR (NULA-SAR) can locate both slowly and fast moving targets correctly. An integrated NULA-SAR algorithm for moving target imaging is also presented, and it is verified by some simulations.

[1]  Peter Willett,et al.  Tracking considerations in selection of radar waveform for range and range-rate measurements , 2002 .

[2]  Gang Li,et al.  Moving target location and imaging using dual-speed velocity SAR , 2007 .

[3]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[4]  Xiang-Gen Xia,et al.  Dual-speed SAR imaging of moving targets , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Brett Borden,et al.  The fractional Fourier transform and ISAR imaging , 2000 .

[6]  Haldun M. Özaktas,et al.  Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class , 1996, IEEE Signal Processing Letters.

[7]  P. J. Fielding,et al.  Waveform optimisation for efficient resource allocation in airborne AESA radar systems , 2001 .

[8]  John C. Wood,et al.  Linear signal synthesis using the Radon-Wigner transform , 1994, IEEE Trans. Signal Process..

[9]  Sergio Barbarossa,et al.  Space-time-frequency processing of synthetic aperture radar signals , 1994 .

[10]  R. J. Evans,et al.  Adaptive waveform selection for tracking in clutter , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[11]  D. Mustard,et al.  Uncertainty principles invariant under the fractional Fourier transform , 1991, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[12]  Robin J. Evans,et al.  Optimal waveform selection for tracking systems , 1994, IEEE Trans. Inf. Theory.

[13]  B. Friedlander,et al.  VSAR: a high resolution radar system for detection of moving targets , 1997 .

[14]  P. Willett,et al.  Further analysis of waveform effects on tracking performance , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[15]  P. Marques,et al.  Velocity estimation of fast moving targets using a single SAR sensor , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Martin Kirscht Detection and imaging of arbitrarily moving targets with single-channel SAR , 2003 .

[17]  R.J. Evans,et al.  Waveform selective probabilistic data association , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[18]  S.A.S. Werness,et al.  Moving target imaging algorithm for SAR data , 1990 .

[19]  R.J. Evans,et al.  Optimal adaptive waveform selection for target detection , 2003, 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695).

[20]  Peter Willett,et al.  Detection-tracking performance with combined waveforms , 1998 .

[21]  V. Bargmann On a Hilbert space of analytic functions and an associated integral transform part I , 1961 .

[22]  R. P. Perry,et al.  SAR imaging of moving targets , 1999 .

[23]  S. Barbarossa Detection and imaging of moving objects with synthetic aperture radar , 1992 .

[24]  Charles M. Rader,et al.  Number theory in digital signal processing , 1979 .

[25]  Xiang-Gen Xia,et al.  Detection, location, and imaging of fast moving targets using multifrequency antenna array SAR , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[26]  M. Kalandros Covariance control for multisensor systems , 2002 .