Facially-constrained colorings of plane graphs: A survey
暂无分享,去创建一个
[1] Stanislav Jendrol',et al. Cyclic Chromatic Number of 3-Connected Plane Graphs , 2001, SIAM J. Discret. Math..
[2] Stanislav Jendrol',et al. Facial parity edge colouring , 2011, Ars Math. Contemp..
[3] Jana Zlámalová. On cyclic chromatic number of plane graphs , 2009 .
[4] Oleg V. Borodin,et al. Structural properties of plane graphs without adjacent triangles and an application to 3-colorings , 1996, J. Graph Theory.
[5] Daniel Král,et al. On Planar Mixed Hypergraphs , 2001, Electron. J. Comb..
[6] Stanislav Jendrol'. Rainbowness of cubic plane graphs , 2006, Discret. Math..
[7] Tanja Hueber. The Four Color Problem Assaults And Conquest , 2016 .
[8] G. Wegner. Graphs with given diameter and a coloring problem , 1977 .
[9] Carsten Thomassen,et al. Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.
[10] Július Czap. Edge looseness of plane graphs , 2015, Ars Math. Contemp..
[11] Erika äKRABUâÁKOVÁ,et al. FACIAL NON-REPETITIVE EDGE COLOURING OF SEMIREGULAR POLYHEDRA , 2009 .
[12] André Raspaud,et al. A note on 2-facial coloring of plane graphs , 2006, Inf. Process. Lett..
[13] Margit Voigt,et al. List colourings of planar graphs , 2006, Discret. Math..
[14] Wayne Goddard,et al. WORM colorings Forbidding Cycles or Cliques , 2014 .
[15] Riste Skrekovski,et al. Odd edge coloring of graphs , 2015, Ars Math. Contemp..
[16] Bettina Speckmann,et al. Polychromatic Colorings of Plane Graphs , 2008, SCG '08.
[17] Elad Horev,et al. Polychromatic colorings of bounded degree plane graphs , 2009, J. Graph Theory.
[18] Bao-gang Xu. On 3-colorings of Plane Graphs , 2004 .
[19] Branko Grünbaum. Grötzsch's theorem on $3$-colorings. , 1963 .
[20] Oleg V. Borodin. Cyclic coloring of plane graphs , 1992, Discret. Math..
[21] Tommy R. Jensen,et al. Graph Coloring Problems , 1994 .
[22] Daniel Král,et al. Non-rainbow colorings of 3-, 4- and 5-connected plane graphs , 2010 .
[23] Mirko Hornák,et al. Another step towards proving a conjecture by Plummer and Toft , 2010, Discret. Math..
[24] Daniel Král,et al. Non-rainbow colorings of 3-, 4- and 5-connected plane graphs , 2010, J. Graph Theory.
[25] Robin J. Wilson. EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .
[26] Matthew J. Katz,et al. Guarding Rectangular Partitions , 2009, Int. J. Comput. Geom. Appl..
[27] Július Czap,et al. Facial edge ranking of plane graphs , 2015, Discret. Appl. Math..
[28] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[29] Igor Fabrici,et al. Unique-Maximum Coloring Of Plane Graphs , 2016, Discuss. Math. Graph Theory.
[30] Riste Skrekovski,et al. Improved bound on facial parity edge coloring , 2013, Discret. Math..
[31] Elad Horev,et al. Polychromatic 4-coloring of cubic bipartite plane graphs , 2012, Discret. Math..
[32] Wayne Goddard,et al. Worm Colorings , 2015, Discuss. Math. Graph Theory.
[33] Prosenjit Bose,et al. Guarding Polyhedral Terrains , 1997, Comput. Geom..
[34] Július Czap,et al. Facial Nonrepetitive Vertex Coloring of Plane Graphs , 2013, J. Graph Theory.
[35] Mickaël Montassier,et al. Entropy compression method applied to graph colorings , 2014, ArXiv.
[36] Roman Soták,et al. Rainbow faces in edge-colored plane graphs , 2009 .
[37] André Raspaud,et al. Planar graphs without 5- and 7-cycles and without adjacent triangles are 3-colorable , 2009, J. Comb. Theory, Ser. B.
[38] Limin Zhang,et al. Every Planar Graph with Maximum Degree 7 Is of Class 1 , 2000, Graphs Comb..
[39] A. Hajnal,et al. On decomposition of graphs , 1967 .
[40] Stanislav Jendrol',et al. Maximum Edge-Colorings Of Graphs , 2016, Discuss. Math. Graph Theory.
[41] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[42] Hikoe Enomoto,et al. A general upper bound for the cyclic chromatic number of 3-connected plane graphs , 2009 .
[43] Xuding Zhu,et al. Nonrepetitive list colourings of paths , 2011, Random Struct. Algorithms.
[44] Stanislav Jendroľ,et al. On rainbowness of semiregular polyhedra , 2008 .
[45] Elad Horev,et al. Polychromatic colorings of rectangular partitions , 2009, Discret. Math..
[46] Yue Zhao,et al. On cyclic colorings and their generalizations , 1999, Discret. Math..
[47] Sandi Klavzar,et al. Nonrepetitive colorings of trees , 2007, Discret. Math..
[48] Jakub Przybylo,et al. On the Facial Thue Choice Number of Plane Graphs Via Entropy Compression Method , 2013, Graphs Comb..
[49] Anthony J. W. Hilton,et al. Colouring the Edges of a Multigraph so that Each Vertex has at Most j, or at Least j, Edges of Each Colour on it , 1975 .
[50] Jean-Sébastien Sereni,et al. Facial colorings using Hall's Theorem , 2010, Eur. J. Comb..
[51] J. Barát,et al. ON SQUARE-FREE VERTEX COLORINGS OF GRAPHS , 2007 .
[52] André Raspaud,et al. Planar graphs without cycles of length from 4 to 7 are 3-colorable , 2005, J. Comb. Theory, Ser. B.
[53] Daniel Král,et al. Cyclic colorings of plane graphs with independent faces , 2008, Eur. J. Comb..
[54] Jakub Przybylo,et al. On the Facial Thue Choice Index via Entropy Compression , 2012, J. Graph Theory.
[55] Yue Zhao,et al. A note on the three color problem , 1995, Graphs Comb..
[56] Oleg V. Borodin,et al. List 2-facial 5-colorability of plane graphs with girth at least 12 , 2012, Discret. Math..
[57] Jaroslaw Grytczuk,et al. Nonrepetitive Colorings of Graphs - A Survey , 2007, Int. J. Math. Math. Sci..
[58] Daniel Král,et al. Colorings Of Plane Graphs With No Rainbow Faces , 2006, Comb..
[59] Csilla Bujtás,et al. F-WORM colorings: Results for 2-connected graphs , 2015, Discret. Appl. Math..
[60] Zsolt Tuza,et al. Decompositions of Plane Graphs Under Parity Constrains Given by Faces , 2013, Discuss. Math. Graph Theory.
[61] Stanislav Jendrol',et al. Facial packing edge-coloring of plane graphs , 2016, Discret. Appl. Math..
[62] Július Czap. Parity vertex coloring of outerplane graphs , 2011, Discret. Math..
[63] Michael D. Plummer,et al. Cyclic coloration of 3-polytopes , 1987, J. Graph Theory.
[64] Robin Thomas,et al. The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.
[65] Csilla Bujtás,et al. K3-Worm Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum , 2016, Discuss. Math. Graph Theory.
[66] Douglas B. West,et al. Maximum Face-Constrained Coloring of Plane Graphs , 2002, Electron. Notes Discret. Math..
[67] Oleg V. Borodin,et al. Colorings of plane graphs: A survey , 2013, Discret. Math..
[68] C. Shannon. A Theorem on Coloring the Lines of a Network , 1949 .
[69] Riste Skrekovski,et al. Strong parity vertex coloring of plane graphs , 2014, Discret. Math. Theor. Comput. Sci..
[70] Carsten Thomassen,et al. Grötzsch's 3-Color Theorem and Its Counterparts for the Torus and the Projective Plane , 1994, J. Comb. Theory, Ser. B.
[71] Alexei N. Glebov,et al. Planar graphs with neither 5‐cycles nor close 3‐cycles are 3‐colorable , 2011, J. Graph Theory.
[72] Daniel Král. On maximum face-constrained coloring of plane graphs with no short face cycles , 2004, Discret. Math..
[73] Stanislav Jendrol',et al. Looseness of Plane Graphs , 2011, Graphs Comb..
[74] S. Grünewald,et al. Chromatic index critical graphs and multigraphs , 2000 .
[75] Yue Zhao,et al. Planar Graphs of Maximum Degree Seven are Class I , 2001, J. Comb. Theory B.
[76] Noga Alon,et al. Nonrepetitive colorings of graphs , 2002, Random Struct. Algorithms.
[77] Stanislav Jendrol',et al. Parity vertex colouring of plane graphs , 2011, Discret. Math..
[78] Dennis Saleh. Zs , 2001 .
[79] Jaroslaw Grytczuk,et al. New approach to nonrepetitive sequences , 2011, Random Struct. Algorithms.
[80] Margit Voigt,et al. A not 3-choosable planar graph without 3-cycles , 1995, Discret. Math..
[81] Yue Zhao,et al. A New Bound on the Cyclic Chromatic Number , 2001, J. Comb. Theory, Ser. B.
[82] G. Ringel. Ein Sechsfarbenproblem auf der Kugel , 1965 .
[83] Jens Schreyer,et al. On the facial Thue choice index of plane graphs , 2012, Discret. Math..
[84] Stanislav Jendrol',et al. Facial list colourings of plane graphs , 2016, Discret. Math..
[85] Ping Wang,et al. An improved bound on parity vertex colourings of outerplane graphs , 2012, Discret. Math..
[86] Bojan Mohar,et al. The Grötzsch Theorem for the Hypergraph of Maximal Cliques , 1999, Electron. J. Comb..
[87] Frank Hoffmann,et al. A Graph-Coloring Result and Its Consequences For Polygon-Guarding Problems , 1996, SIAM J. Discret. Math..
[88] László Lovász. On decomposition of graphs , 1966 .
[89] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[90] Daniel Král,et al. Cyclic, diagonal and facial colorings - a missing case , 2007, Eur. J. Comb..
[91] Maarten Löffler,et al. Polychromatic 4-coloring of guillotine subdivisions , 2009, Inf. Process. Lett..
[92] Jana Zlámalová,et al. A note on cyclic chromatic number , 2010, Discuss. Math. Graph Theory.
[93] Stanislav Jendrol',et al. Facial parity edge colouring of plane pseudographs , 2012, Discret. Math..
[94] Omid Amini,et al. A unified approach to distance-two colouring of planar graphs , 2009, SODA.
[95] A. Petermann. ON THE FOUR-COLOR-MAP THEOREM , 2004 .
[96] Mirko Hornák,et al. On-line ranking number for cycles and paths , 1999, Discuss. Math. Graph Theory.
[97] Yingqian Wang,et al. On 3-colorability of planar graphs without adjacent short cycles , 2010 .
[98] Jean-Sébastien Sereni,et al. 3-Facial Coloring of Plane Graphs , 2008, SIAM J. Discret. Math..
[99] Jaroslaw Grytczuk,et al. Nonrepetitive colorings of graphs , 2007, Electron. Notes Discret. Math..
[100] Stanislav Jendrol',et al. Facial non‐repetitive edge‐coloring of plane graphs , 2011, J. Graph Theory.
[101] Seiya Negami. Looseness ranges of triangulations on closed surfaces , 2005, Discret. Math..
[102] André Kündgen,et al. Gaps in the Chromatic Spectrum of Face-Constrained Plane Graphs , 2001, Electron. J. Comb..
[103] Tamás Mátrai. Covering the edges of a graph by three odd subgraphs , 2006 .
[104] Balázs Keszegh,et al. Polychromatic colorings of arbitrary rectangular partitions , 2010, Discret. Math..
[105] Vitaly I. Voloshin,et al. Colouring Planar Mixed Hypergraphs , 2000, Electron. J. Comb..
[106] André Raspaud,et al. Planar graphs without adjacent cycles of length at most seven are 3-colorable , 2010, Discret. Math..
[107] Stanislav Jendrol',et al. Unique-maximum edge-colouring of plane graphs with respect to faces , 2015, Discret. Appl. Math..
[108] Alex Wendland,et al. Coloring of Plane Graphs with Unique Maximal Colors on Faces , 2016, J. Graph Theory.
[109] Daniel Král,et al. Third Case of the Cyclic Coloring Conjecture , 2016, SIAM J. Discret. Math..
[110] David G. Kirkpatrick,et al. Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces , 2003, Comput. Geom..
[111] Min Chen,et al. On 3-colorable planar graphs without short cycles , 2008, Appl. Math. Lett..
[112] Guizhen Liu,et al. A note on the edge cover chromatic index of multigraphs , 2008, Discret. Math..
[113] Stanislav Jendrol',et al. Matchings and Nonrainbow Colorings , 2009, SIAM J. Discret. Math..
[114] D. Y. Kesel'man,et al. Covering the edges of a graph by circuits , 1987 .
[115] Július Czap,et al. Facial Parity 9-Edge-Coloring of Outerplane Graphs , 2015, Graphs Comb..
[116] Frédéric Havet. Choosability of the square of planar subcubic graphs with large girth , 2009, Discret. Math..
[117] Douglas B. West,et al. Maximum face-constrained coloring of plane graphs , 2004, Discret. Math..
[118] Stanislav Jendrol',et al. Nonrepetitive vertex colorings of graphs , 2012, Discret. Math..
[119] Ram Prakash Gupta,et al. On decompositions of a multi-graph into spanning subgraphs , 1974 .
[120] Daniel Král,et al. Cyclic, diagonal and facial colorings , 2005, Eur. J. Comb..
[121] R. Steinberg. The State of the Three Color Problem , 1993 .
[122] Peter Sugerek,et al. L-facial Edge Colorings of Graphs , 2015, Discret. Appl. Math..
[123] André Kündgen,et al. Nonrepetitive colorings of graphs of bounded tree-width , 2008, Discret. Math..
[124] Mirko Horňák,et al. On a conjecture by Plummer and Toft , 1999 .
[125] David R. Wood,et al. Nonrepetitive colouring via entropy compression , 2011, Comb..
[126] Jarosław Grytczuk,et al. Nonrepetitive Graph Coloring , 2006 .
[128] James D. Currie,et al. There Are Ternary Circular Square-Free Words of Length n for n >= 18 , 2002, Electron. J. Comb..
[129] Stanislav Jendrol',et al. On strong parity chromatic number , 2011, Discuss. Math. Graph Theory.
[130] K. Appel,et al. Every planar map is four colorable. Part II: Reducibility , 1977 .
[131] J. A. Bondy,et al. Graph Theory , 2008, Graduate Texts in Mathematics.
[132] Tait. 10. Remarks on the previous Communication , 1880 .
[133] Baogang Xu,et al. A 3-color Theorem on Plane Graphs without 5-circuits , 2007 .
[134] Stanislav Jendrol',et al. Colouring vertices of plane graphs under restrictions given by faces , 2009, Discuss. Math. Graph Theory.
[135] Július Czap. Facial parity edge coloring of outerplane graphs , 2012, Ars Math. Contemp..
[136] Oleg V. Borodin. A new proof of the 6 color theorem , 1995, J. Graph Theory.