Facially-constrained colorings of plane graphs: A survey

Abstract In this survey the following types of colorings of plane graphs are discussed, both in their vertex and edge versions: facially proper coloring, rainbow coloring, antirainbow coloring, loose coloring, polychromatic coloring, l -facial coloring, nonrepetitive coloring, odd coloring, unique-maximum coloring, WORM coloring, ranking coloring and packing coloring. In the last section of this paper we show that using the language of words these different types of colorings can be formulated in a more general unified setting.

[1]  Stanislav Jendrol',et al.  Cyclic Chromatic Number of 3-Connected Plane Graphs , 2001, SIAM J. Discret. Math..

[2]  Stanislav Jendrol',et al.  Facial parity edge colouring , 2011, Ars Math. Contemp..

[3]  Jana Zlámalová On cyclic chromatic number of plane graphs , 2009 .

[4]  Oleg V. Borodin,et al.  Structural properties of plane graphs without adjacent triangles and an application to 3-colorings , 1996, J. Graph Theory.

[5]  Daniel Král,et al.  On Planar Mixed Hypergraphs , 2001, Electron. J. Comb..

[6]  Stanislav Jendrol' Rainbowness of cubic plane graphs , 2006, Discret. Math..

[7]  Tanja Hueber The Four Color Problem Assaults And Conquest , 2016 .

[8]  G. Wegner Graphs with given diameter and a coloring problem , 1977 .

[9]  Carsten Thomassen,et al.  Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.

[10]  Július Czap Edge looseness of plane graphs , 2015, Ars Math. Contemp..

[11]  Erika äKRABUâÁKOVÁ,et al.  FACIAL NON-REPETITIVE EDGE COLOURING OF SEMIREGULAR POLYHEDRA , 2009 .

[12]  André Raspaud,et al.  A note on 2-facial coloring of plane graphs , 2006, Inf. Process. Lett..

[13]  Margit Voigt,et al.  List colourings of planar graphs , 2006, Discret. Math..

[14]  Wayne Goddard,et al.  WORM colorings Forbidding Cycles or Cliques , 2014 .

[15]  Riste Skrekovski,et al.  Odd edge coloring of graphs , 2015, Ars Math. Contemp..

[16]  Bettina Speckmann,et al.  Polychromatic Colorings of Plane Graphs , 2008, SCG '08.

[17]  Elad Horev,et al.  Polychromatic colorings of bounded degree plane graphs , 2009, J. Graph Theory.

[18]  Bao-gang Xu On 3-colorings of Plane Graphs , 2004 .

[19]  Branko Grünbaum Grötzsch's theorem on $3$-colorings. , 1963 .

[20]  Oleg V. Borodin Cyclic coloring of plane graphs , 1992, Discret. Math..

[21]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[22]  Daniel Král,et al.  Non-rainbow colorings of 3-, 4- and 5-connected plane graphs , 2010 .

[23]  Mirko Hornák,et al.  Another step towards proving a conjecture by Plummer and Toft , 2010, Discret. Math..

[24]  Daniel Král,et al.  Non-rainbow colorings of 3-, 4- and 5-connected plane graphs , 2010, J. Graph Theory.

[25]  Robin J. Wilson EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .

[26]  Matthew J. Katz,et al.  Guarding Rectangular Partitions , 2009, Int. J. Comput. Geom. Appl..

[27]  Július Czap,et al.  Facial edge ranking of plane graphs , 2015, Discret. Appl. Math..

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Igor Fabrici,et al.  Unique-Maximum Coloring Of Plane Graphs , 2016, Discuss. Math. Graph Theory.

[30]  Riste Skrekovski,et al.  Improved bound on facial parity edge coloring , 2013, Discret. Math..

[31]  Elad Horev,et al.  Polychromatic 4-coloring of cubic bipartite plane graphs , 2012, Discret. Math..

[32]  Wayne Goddard,et al.  Worm Colorings , 2015, Discuss. Math. Graph Theory.

[33]  Prosenjit Bose,et al.  Guarding Polyhedral Terrains , 1997, Comput. Geom..

[34]  Július Czap,et al.  Facial Nonrepetitive Vertex Coloring of Plane Graphs , 2013, J. Graph Theory.

[35]  Mickaël Montassier,et al.  Entropy compression method applied to graph colorings , 2014, ArXiv.

[36]  Roman Soták,et al.  Rainbow faces in edge-colored plane graphs , 2009 .

[37]  André Raspaud,et al.  Planar graphs without 5- and 7-cycles and without adjacent triangles are 3-colorable , 2009, J. Comb. Theory, Ser. B.

[38]  Limin Zhang,et al.  Every Planar Graph with Maximum Degree 7 Is of Class 1 , 2000, Graphs Comb..

[39]  A. Hajnal,et al.  On decomposition of graphs , 1967 .

[40]  Stanislav Jendrol',et al.  Maximum Edge-Colorings Of Graphs , 2016, Discuss. Math. Graph Theory.

[41]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[42]  Hikoe Enomoto,et al.  A general upper bound for the cyclic chromatic number of 3-connected plane graphs , 2009 .

[43]  Xuding Zhu,et al.  Nonrepetitive list colourings of paths , 2011, Random Struct. Algorithms.

[44]  Stanislav Jendroľ,et al.  On rainbowness of semiregular polyhedra , 2008 .

[45]  Elad Horev,et al.  Polychromatic colorings of rectangular partitions , 2009, Discret. Math..

[46]  Yue Zhao,et al.  On cyclic colorings and their generalizations , 1999, Discret. Math..

[47]  Sandi Klavzar,et al.  Nonrepetitive colorings of trees , 2007, Discret. Math..

[48]  Jakub Przybylo,et al.  On the Facial Thue Choice Number of Plane Graphs Via Entropy Compression Method , 2013, Graphs Comb..

[49]  Anthony J. W. Hilton,et al.  Colouring the Edges of a Multigraph so that Each Vertex has at Most j, or at Least j, Edges of Each Colour on it , 1975 .

[50]  Jean-Sébastien Sereni,et al.  Facial colorings using Hall's Theorem , 2010, Eur. J. Comb..

[51]  J. Barát,et al.  ON SQUARE-FREE VERTEX COLORINGS OF GRAPHS , 2007 .

[52]  André Raspaud,et al.  Planar graphs without cycles of length from 4 to 7 are 3-colorable , 2005, J. Comb. Theory, Ser. B.

[53]  Daniel Král,et al.  Cyclic colorings of plane graphs with independent faces , 2008, Eur. J. Comb..

[54]  Jakub Przybylo,et al.  On the Facial Thue Choice Index via Entropy Compression , 2012, J. Graph Theory.

[55]  Yue Zhao,et al.  A note on the three color problem , 1995, Graphs Comb..

[56]  Oleg V. Borodin,et al.  List 2-facial 5-colorability of plane graphs with girth at least 12 , 2012, Discret. Math..

[57]  Jaroslaw Grytczuk,et al.  Nonrepetitive Colorings of Graphs - A Survey , 2007, Int. J. Math. Math. Sci..

[58]  Daniel Král,et al.  Colorings Of Plane Graphs With No Rainbow Faces , 2006, Comb..

[59]  Csilla Bujtás,et al.  F-WORM colorings: Results for 2-connected graphs , 2015, Discret. Appl. Math..

[60]  Zsolt Tuza,et al.  Decompositions of Plane Graphs Under Parity Constrains Given by Faces , 2013, Discuss. Math. Graph Theory.

[61]  Stanislav Jendrol',et al.  Facial packing edge-coloring of plane graphs , 2016, Discret. Appl. Math..

[62]  Július Czap Parity vertex coloring of outerplane graphs , 2011, Discret. Math..

[63]  Michael D. Plummer,et al.  Cyclic coloration of 3-polytopes , 1987, J. Graph Theory.

[64]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[65]  Csilla Bujtás,et al.  K3-Worm Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum , 2016, Discuss. Math. Graph Theory.

[66]  Douglas B. West,et al.  Maximum Face-Constrained Coloring of Plane Graphs , 2002, Electron. Notes Discret. Math..

[67]  Oleg V. Borodin,et al.  Colorings of plane graphs: A survey , 2013, Discret. Math..

[68]  C. Shannon A Theorem on Coloring the Lines of a Network , 1949 .

[69]  Riste Skrekovski,et al.  Strong parity vertex coloring of plane graphs , 2014, Discret. Math. Theor. Comput. Sci..

[70]  Carsten Thomassen,et al.  Grötzsch's 3-Color Theorem and Its Counterparts for the Torus and the Projective Plane , 1994, J. Comb. Theory, Ser. B.

[71]  Alexei N. Glebov,et al.  Planar graphs with neither 5‐cycles nor close 3‐cycles are 3‐colorable , 2011, J. Graph Theory.

[72]  Daniel Král On maximum face-constrained coloring of plane graphs with no short face cycles , 2004, Discret. Math..

[73]  Stanislav Jendrol',et al.  Looseness of Plane Graphs , 2011, Graphs Comb..

[74]  S. Grünewald,et al.  Chromatic index critical graphs and multigraphs , 2000 .

[75]  Yue Zhao,et al.  Planar Graphs of Maximum Degree Seven are Class I , 2001, J. Comb. Theory B.

[76]  Noga Alon,et al.  Nonrepetitive colorings of graphs , 2002, Random Struct. Algorithms.

[77]  Stanislav Jendrol',et al.  Parity vertex colouring of plane graphs , 2011, Discret. Math..

[78]  Dennis Saleh Zs , 2001 .

[79]  Jaroslaw Grytczuk,et al.  New approach to nonrepetitive sequences , 2011, Random Struct. Algorithms.

[80]  Margit Voigt,et al.  A not 3-choosable planar graph without 3-cycles , 1995, Discret. Math..

[81]  Yue Zhao,et al.  A New Bound on the Cyclic Chromatic Number , 2001, J. Comb. Theory, Ser. B.

[82]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[83]  Jens Schreyer,et al.  On the facial Thue choice index of plane graphs , 2012, Discret. Math..

[84]  Stanislav Jendrol',et al.  Facial list colourings of plane graphs , 2016, Discret. Math..

[85]  Ping Wang,et al.  An improved bound on parity vertex colourings of outerplane graphs , 2012, Discret. Math..

[86]  Bojan Mohar,et al.  The Grötzsch Theorem for the Hypergraph of Maximal Cliques , 1999, Electron. J. Comb..

[87]  Frank Hoffmann,et al.  A Graph-Coloring Result and Its Consequences For Polygon-Guarding Problems , 1996, SIAM J. Discret. Math..

[88]  László Lovász On decomposition of graphs , 1966 .

[89]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[90]  Daniel Král,et al.  Cyclic, diagonal and facial colorings - a missing case , 2007, Eur. J. Comb..

[91]  Maarten Löffler,et al.  Polychromatic 4-coloring of guillotine subdivisions , 2009, Inf. Process. Lett..

[92]  Jana Zlámalová,et al.  A note on cyclic chromatic number , 2010, Discuss. Math. Graph Theory.

[93]  Stanislav Jendrol',et al.  Facial parity edge colouring of plane pseudographs , 2012, Discret. Math..

[94]  Omid Amini,et al.  A unified approach to distance-two colouring of planar graphs , 2009, SODA.

[95]  A. Petermann ON THE FOUR-COLOR-MAP THEOREM , 2004 .

[96]  Mirko Hornák,et al.  On-line ranking number for cycles and paths , 1999, Discuss. Math. Graph Theory.

[97]  Yingqian Wang,et al.  On 3-colorability of planar graphs without adjacent short cycles , 2010 .

[98]  Jean-Sébastien Sereni,et al.  3-Facial Coloring of Plane Graphs , 2008, SIAM J. Discret. Math..

[99]  Jaroslaw Grytczuk,et al.  Nonrepetitive colorings of graphs , 2007, Electron. Notes Discret. Math..

[100]  Stanislav Jendrol',et al.  Facial non‐repetitive edge‐coloring of plane graphs , 2011, J. Graph Theory.

[101]  Seiya Negami Looseness ranges of triangulations on closed surfaces , 2005, Discret. Math..

[102]  André Kündgen,et al.  Gaps in the Chromatic Spectrum of Face-Constrained Plane Graphs , 2001, Electron. J. Comb..

[103]  Tamás Mátrai Covering the edges of a graph by three odd subgraphs , 2006 .

[104]  Balázs Keszegh,et al.  Polychromatic colorings of arbitrary rectangular partitions , 2010, Discret. Math..

[105]  Vitaly I. Voloshin,et al.  Colouring Planar Mixed Hypergraphs , 2000, Electron. J. Comb..

[106]  André Raspaud,et al.  Planar graphs without adjacent cycles of length at most seven are 3-colorable , 2010, Discret. Math..

[107]  Stanislav Jendrol',et al.  Unique-maximum edge-colouring of plane graphs with respect to faces , 2015, Discret. Appl. Math..

[108]  Alex Wendland,et al.  Coloring of Plane Graphs with Unique Maximal Colors on Faces , 2016, J. Graph Theory.

[109]  Daniel Král,et al.  Third Case of the Cyclic Coloring Conjecture , 2016, SIAM J. Discret. Math..

[110]  David G. Kirkpatrick,et al.  Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces , 2003, Comput. Geom..

[111]  Min Chen,et al.  On 3-colorable planar graphs without short cycles , 2008, Appl. Math. Lett..

[112]  Guizhen Liu,et al.  A note on the edge cover chromatic index of multigraphs , 2008, Discret. Math..

[113]  Stanislav Jendrol',et al.  Matchings and Nonrainbow Colorings , 2009, SIAM J. Discret. Math..

[114]  D. Y. Kesel'man,et al.  Covering the edges of a graph by circuits , 1987 .

[115]  Július Czap,et al.  Facial Parity 9-Edge-Coloring of Outerplane Graphs , 2015, Graphs Comb..

[116]  Frédéric Havet Choosability of the square of planar subcubic graphs with large girth , 2009, Discret. Math..

[117]  Douglas B. West,et al.  Maximum face-constrained coloring of plane graphs , 2004, Discret. Math..

[118]  Stanislav Jendrol',et al.  Nonrepetitive vertex colorings of graphs , 2012, Discret. Math..

[119]  Ram Prakash Gupta,et al.  On decompositions of a multi-graph into spanning subgraphs , 1974 .

[120]  Daniel Král,et al.  Cyclic, diagonal and facial colorings , 2005, Eur. J. Comb..

[121]  R. Steinberg The State of the Three Color Problem , 1993 .

[122]  Peter Sugerek,et al.  L-facial Edge Colorings of Graphs , 2015, Discret. Appl. Math..

[123]  André Kündgen,et al.  Nonrepetitive colorings of graphs of bounded tree-width , 2008, Discret. Math..

[124]  Mirko Horňák,et al.  On a conjecture by Plummer and Toft , 1999 .

[125]  David R. Wood,et al.  Nonrepetitive colouring via entropy compression , 2011, Comb..

[126]  Jarosław Grytczuk,et al.  Nonrepetitive Graph Coloring , 2006 .

[128]  James D. Currie,et al.  There Are Ternary Circular Square-Free Words of Length n for n >= 18 , 2002, Electron. J. Comb..

[129]  Stanislav Jendrol',et al.  On strong parity chromatic number , 2011, Discuss. Math. Graph Theory.

[130]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[131]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[132]  Tait 10. Remarks on the previous Communication , 1880 .

[133]  Baogang Xu,et al.  A 3-color Theorem on Plane Graphs without 5-circuits , 2007 .

[134]  Stanislav Jendrol',et al.  Colouring vertices of plane graphs under restrictions given by faces , 2009, Discuss. Math. Graph Theory.

[135]  Július Czap Facial parity edge coloring of outerplane graphs , 2012, Ars Math. Contemp..

[136]  Oleg V. Borodin A new proof of the 6 color theorem , 1995, J. Graph Theory.