All Rational Polytopes Are Transportation Polytopes and All Polytopal Integer Sets Are Contingency Tables

We show that any rational polytope is polynomial-time representable as a “slim” r× c × 3 three-way line-sum transportation polytope. This universality theorem has important consequences for linear and integer programming and for confidential statistical data disclosure.

[1]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[2]  V. Klee,et al.  FACETS AND VERTICES OF TRANSPORTATION POLYTOPES , 1967 .

[3]  Nitin R. Patel,et al.  A Network Algorithm for Performing Fisher's Exact Test in r × c Contingency Tables , 1983 .

[4]  V. A. Yemelicher,et al.  Polytopes, Graphs and Optimisation , 1984 .

[5]  Milan Vlach,et al.  Conditions for the existence of solutions of the three-dimensional planar transportation problem , 1986, Discret. Appl. Math..

[6]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[7]  Dan Gusfield,et al.  A Graph Theoretic Approach to Statistical Data Security , 1988, SIAM J. Comput..

[8]  Michel Balinski,et al.  Signature classes of transportation polytopes , 1993, Math. Program..

[9]  Mark Jerrum,et al.  Three-Dimensional Statistical Data Security Problems , 1994, SIAM J. Comput..

[10]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[11]  Jochen Könemann,et al.  Faster and simpler algorithms for multicommodity flow and other fractional packing problems , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[12]  Uriel G. Rothblum,et al.  A Polynomial Time Algorithm for Shaped Partition Problems , 1999, SIAM J. Optim..

[13]  Lisa Fleischer,et al.  Approximating Fractional Multicommodity Flow Independent of the Number of Commodities , 2000, SIAM J. Discret. Math..

[14]  Leonard J. Schulman,et al.  The Vector Partition Problem for Convex Objective Functions , 2001, Math. Oper. Res..

[15]  P. Doyle,et al.  Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies , 2001 .

[16]  Ramayya Krishnan,et al.  Disclosure Limitation Methods and Information Loss for Tabular Data , 2001 .

[17]  Seth Sullivant,et al.  Gröbner Bases and Polyhedral Geometry of Reducible and Cyclic Models , 2002, J. Comb. Theory, Ser. A.

[18]  Michel Balinski,et al.  The Stable Allocation (or Ordinal Transportation) Problem , 2002, Math. Oper. Res..

[19]  Martin E. Dyer,et al.  Random walks on the vertices of transportation polytopes with constant number of sources , 2003, SODA '03.

[20]  Uriel G. Rothblum,et al.  Convex Combinatorial Optimization , 2003, Discret. Comput. Geom..

[21]  Jesús A. De Loera,et al.  The Complexity of Three-Way Statistical Tables , 2002, SIAM J. Comput..

[22]  J. Humphreys Polytopes, Graphs and Optimisation , 2022 .