Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes

[1]  A. Cooper,et al.  Predicting microporous crystalline polyimides , 2009 .

[2]  Alexander M. Spokoyny,et al.  Gas-sorption properties of cobalt(II)--carborane-based coordination polymers as a function of morphology. , 2009, Small.

[3]  Omar K Farha,et al.  Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials. , 2009, Journal of the American Chemical Society.

[4]  Chongli Zhong,et al.  Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[5]  Neil L. Campbell,et al.  Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks , 2009 .

[6]  G. Garberoglio,et al.  Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks , 2008 .

[7]  A. Cooper,et al.  Atomistic Simulation of Micropore Structure, Surface Area, and Gas Sorption Properties for Amorphous Microporous Polymer Networks , 2008 .

[8]  S. Wan,et al.  A belt-shaped, blue luminescent, and semiconducting covalent organic framework. , 2008, Angewandte Chemie.

[9]  Jean M. J. Fréchet,et al.  Preparation of Size-Selective Nanoporous Polymer Networks of Aromatic Rings: Potential Adsorbents for Hydrogen Storage , 2008 .

[10]  S. Makhseed,et al.  Hydrogen adsorption in microporous organic framework polymer. , 2008, Chemical communications.

[11]  Sang Soo Han,et al.  Covalent organic frameworks as exceptional hydrogen storage materials. , 2008, Journal of the American Chemical Society.

[12]  Jianwen Jiang,et al.  Exceptionally high CO2storage in covalent-organic frameworks: Atomistic simulation study , 2008 .

[13]  Patrick Ryan,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[14]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[15]  M. Mastalerz The next generation of shape-persistant zeolite analogues: covalent organic frameworks. , 2008, Angewandte Chemie.

[16]  I. Willner,et al.  Cover Picture: Increasing the Complexity of Periodic Protein Nanostructures by the Rolling‐Circle‐Amplified Synthesis of Aptamers (Angew. Chem. Int. Ed. 1/2008) , 2008 .

[17]  R. T. Yang,et al.  Hydrogen storage in metal‐organic and covalent‐organic frameworks by spillover , 2008 .

[18]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[19]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[20]  Gérard Férey,et al.  Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks , 2007 .

[21]  A. Cooper,et al.  Ultra-fast microwave enhanced reversible addition-fragmentation chain transfer (RAFT) polymerization: monomers to polymers in minutes. , 2007, Chemical Communications.

[22]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[23]  Neil L. Campbell,et al.  Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks , 2007 .

[24]  C. Serre,et al.  Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. , 2006, Journal of the American Chemical Society.

[25]  William R. Gemmill,et al.  Facile Synthesis of a Highly Crystalline, Covalently Linked Porous Boronate Network , 2006 .

[26]  R. Masel,et al.  Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. , 2006, Journal of the American Chemical Society.

[27]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[28]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[29]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[30]  G. Spoto,et al.  Theoretical maximal storage of hydrogen in zeolitic frameworks. , 2005, Physical chemistry chemical physics : PCCP.

[31]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[32]  Ulrich S. Schubert,et al.  Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives , 2004 .

[33]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[34]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[35]  A. Cooper,et al.  Synthesis of Molded Monolithic Porous Polymers Using Supercritical Carbon Dioxide as the Porogenic Solvent , 1999 .

[36]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[37]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[38]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[39]  G. Halsey,et al.  Physical Adsorption on Non‐Uniform Surfaces , 1948 .