A phylogenomic analysis of the Actinomycetales mce operons

[1]  S. Fortune,et al.  Characterization of mycobacterial virulence genes through genetic interaction mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. Awai,et al.  A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. Tabbara,et al.  Clinical relevance of virulence genes in Campylobacter jejuni isolates in Bahrain. , 2006, Journal of medical microbiology.

[4]  D. Yero,et al.  Computational identification of beta-barrel outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as putative vaccine candidates. , 2006, Tuberculosis.

[5]  W. Müller,et al.  PCR detection of virulence-associated genes in Campylobacter jejuni strains with differential ability to invade Caco-2 cells and to colonize the chick gut. , 2006, Veterinary microbiology.

[6]  P. Alifano,et al.  Identification of a Meningococcal l-Glutamate ABC Transporter Operon Essential for Growth in Low-Sodium Environments , 2006, Infection and Immunity.

[7]  N. Casali,et al.  Regulation of the Mycobacterium tuberculosis mce1 Operon , 2006, Journal of bacteriology.

[8]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt): an expanding universe of protein information , 2005, Nucleic Acids Res..

[9]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[10]  Amos Bairoch,et al.  The PROSITE database , 2005, Nucleic Acids Res..

[11]  A. Otto,et al.  Molecular analysis of the interaction between cardosin A and phospholipase Dα , 2005, The FEBS journal.

[12]  K. Awai,et al.  Mutation of the TGD1 Chloroplast Envelope Protein Affects Phosphatidate Metabolism in Arabidopsisw⃞ , 2005, The Plant Cell Online.

[13]  D. Korsak,et al.  Prevalence of potential virulence markers in Polish Campylobacter jejuni and Campylobacter coli isolates obtained from hospitalized children and from chicken carcasses. , 2005, Journal of medical microbiology.

[14]  G. von Heijne,et al.  Materials and Methods Figs. S1 to S3 References and Notes Global Topology Analysis of the Escherichia Coli Inner Membrane Proteome , 2022 .

[15]  A. Cataldi,et al.  Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. , 2005, Microbes and infection.

[16]  V. Brahmachari,et al.  Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. , 2005, FEMS immunology and medical microbiology.

[17]  Cathy H. Wu,et al.  InterPro, progress and status in 2005 , 2004, Nucleic Acids Res..

[18]  E. Dassa,et al.  Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. , 2004, Journal of molecular biology.

[19]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[20]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[21]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[22]  A. Anderson,et al.  Isolation and Characterization of Polycyclic Aromatic Hydrocarbon–Degrading Mycobacterium Isolates from Soil , 2004, Microbial Ecology.

[23]  P. Alifano,et al.  Regulation and differential expression of gdhA encoding NADP‐specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates , 2004, Molecular microbiology.

[24]  N. Casali,et al.  Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Christopher M. Sassetti,et al.  Genetic requirements for mycobacterial survival during infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Froehlich,et al.  A permease‐like protein involved in ER to thylakoid lipid transfer in Arabidopsis , 2003, The EMBO journal.

[27]  W. Boos,et al.  Prokaryotic Binding Protein‐Dependent ABC Transporters , 2003 .

[28]  C. DeLisi,et al.  The society of genes: networks of functional links between genes from comparative genomics , 2002, Genome Biology.

[29]  A. Cataldi,et al.  Negative transcriptional regulation of the mce3 operon in Mycobacterium tuberculosis. , 2002, Microbiology.

[30]  S. Verjovski-Almeida,et al.  Whole-Genome Analysis of Transporters in the Plant Pathogen Xylella fastidiosa , 2002, Microbiology and Molecular Biology Reviews.

[31]  J. Betts,et al.  Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling , 2002, Molecular microbiology.

[32]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[33]  G. Schoolnik,et al.  The Mycobacterium tuberculosis ECF sigma factor σE: role in global gene expression and survival in macrophages † , 2001, Molecular microbiology.

[34]  Dirk Schnappinger,et al.  Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Dassa,et al.  The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. , 2001, Research in microbiology.

[36]  Xi Jiang,et al.  Molecular Characterization of Invasive and Noninvasive Campylobacter jejuni and Campylobacter coli Isolates , 2001, Journal of Clinical Microbiology.

[37]  Sangwei Lu,et al.  Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry , 2001, Cellular microbiology.

[38]  E. Koonin,et al.  Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. , 2001, Genome research.

[39]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[40]  G von Heijne,et al.  Consensus predictions of membrane protein topology , 2000, FEBS letters.

[41]  R. Bishop,et al.  The bacterial lipocalins. , 2000, Biochimica et biophysica acta.

[42]  J. Content,et al.  The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. , 2000, FEMS microbiology reviews.

[43]  James C. Sacchettini,et al.  Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase , 2000, Nature.

[44]  G J Barton,et al.  Application of multiple sequence alignment profiles to improve protein secondary structure prediction , 2000, Proteins.

[45]  E. Koonin,et al.  The STAS domain — a link between anion transporters and antisigma-factor antagonists , 2000, Current Biology.

[46]  S T Cole,et al.  Analysis of the proteome of Mycobacterium tuberculosis in silico. , 1999, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[47]  M. Klein,et al.  Disruption of the mycobacterial cell entry gene of Mycobacterium bovis BCG results in a mutant that exhibits a reduced invasiveness for epithelial cells. , 1999, FEMS microbiology letters.

[48]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[49]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G. Fichant,et al.  Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. , 1999, Journal of molecular biology.

[51]  A. Cataldi,et al.  A 12.7 kb fragment of the Mycobacterium tuberculosis genome is not present in Mycobacterium bovis. , 1999, Microbiology.

[52]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Payne,et al.  Identification of Two Shigella flexneriChromosomal Loci Involved in Intercellular Spreading , 1998, Infection and Immunity.

[54]  D. Lim,et al.  Isolation and Characterization of Toluene-Sensitive Mutants from the Toluene-Resistant Bacterium Pseudomonas putida GM73 , 1998, Journal of bacteriology.

[55]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[56]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[57]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[58]  K. Linton,et al.  The Escherichia coli ATP‐binding cassette (ABC) proteins , 1998, Molecular microbiology.

[59]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[60]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[61]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[62]  M. Hofnung,et al.  Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits , 1997, The EMBO journal.

[63]  J. Ramos,et al.  Mechanisms for Solvent Tolerance in Bacteria* , 1997, The Journal of Biological Chemistry.

[64]  A. Lupas Coiled coils: new structures and new functions. , 1996, Trends in biochemical sciences.

[65]  K. Nikaido,et al.  Liganded and Unliganded Receptors Interact with Equal Affinity with the Membrane Complex of Periplasmic Permeases, a Subfamily of Traffic ATPases* , 1996, The Journal of Biological Chemistry.

[66]  Y. Koh,et al.  Isolation of a novel paraquat-inducible (pqi) gene regulated by the soxRS locus in Escherichia coli , 1995, Journal of bacteriology.

[67]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[68]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[69]  W. Saurin,et al.  Bacterial binding protein‐dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins , 1994, Molecular microbiology.

[70]  W. Saurin,et al.  Sequence relationships between integral inner membrane proteins of binding protein‐dependent transport systems: Evolution by recurrent gene duplications , 1994, Protein science : a publication of the Protein Society.

[71]  R. Knights,et al.  Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. , 1993, Science.

[72]  M H Saier,et al.  Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria , 1993, Microbiological reviews.

[73]  S. Cole,et al.  Nucleotide sequence of the first cosmid from the Mycobacterium leprae genome project: structure and function of the Rif‐Str regions , 1993, Molecular microbiology.

[74]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[75]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[76]  G. Ames,et al.  Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. , 1990, FEMS microbiology reviews.

[77]  G. Ames,et al.  Bacterial periplasmic permeases belong to a family of transport proteins operating from to human: Traffic ATPases , 1990 .

[78]  M. Hofnung,et al.  Sequence of gene malG in E. coli K12: homologies between integral membrane components from binding protein‐dependent transport systems. , 1985, The EMBO journal.

[79]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[80]  R. Pajóna,et al.  Computational identification of beta-barrel outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as putative vaccine candidates , 2006 .

[81]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[82]  E. Dassa PHYLOGENETIC AND FUNCTIONAL CLASSIFICATION OF ABC (ATP-BINDING CASSETTE) SYSTEMS**ABSCISSE, a database of ABC systems, which includes functional, sequence and structural information, is available on the internet at the following address: www.pasteur.fr/recherche/unites/pmtg/abc/index.html. , 2003 .

[83]  G. Schoolnik,et al.  Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment JOURNAL OF EXPERIMENTAL MEDICINE , 2003 .

[84]  G. Winkelmann Microbial transport systems , 2001 .

[85]  William Saurin,et al.  Getting In or Out: Early Segregation Between Importers and Exporters in the Evolution of ATP-Binding Cassette (ABC) Transporters , 1999, Journal of Molecular Evolution.

[86]  M. Hofnung,et al.  Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. , 1995, Research in microbiology.

[87]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[88]  E. Stackebrandt,et al.  The molecular phylogeny and systematics of the actinomycetes. , 1994, Annual review of microbiology.

[89]  S. Holbrook,et al.  Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. , 1992, Advances in enzymology and related areas of molecular biology.

[90]  M. Ginsberg,et al.  Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. , 1991, Trends in biochemical sciences.

[91]  R. M. Kroppenstedt Fatty acid and menaquinone analysis of actinomycetes and related organisms , 1985 .