On the atomic kinetic energy functionals with full Weizsacker correction

The functional proposed by Acharya, Bartolotti, Sears, and Parr for representing the kinetic energy of the ground state of an N electron atom or ion in terms of its electron density, namely T[ρ] = Tw[ρ] +γ(N, Z) TTF[ρ] [TW is the Weizsacker term, TTF is the Thomas–Fermi term and γ(N, Z) = 1−C0/N1/3] is derived by: (1) considering explicitly the variation of the charge density in an atom, and (2) approximating the pair correlation function for parallel spin electrons by that of a uniform free‐electron gas, but including the corrections to the momentum at the Fermi level and the appropriate boundary conditions that result from taking into account that the number of electrons in an atom is finite. The first consideration leads in a natural way to the full Weizsacker correction, while the second consideration yields γ(N, Z) = (1−2/N)(1−C0/N1/3−C1/N1/3) times the Thomas–Fermi term. Thus, the functional obtained is exact for one‐electron atoms and two‐electron Hartree–Fock atoms, yields an adequate functional d...

[1]  R. Bader,et al.  The kinetic energy of molecular charge distributions and molecular stability , 1969 .

[2]  C. Hodges Quantum Corrections to the Thomas–Fermi Approximation—The Kirzhnits Method , 1973 .

[3]  C. Shih Hartree-Fock densities in Thomas-Fermi-Dirac formulas including the inhomogeneity term , 1976 .

[4]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[5]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[6]  J. Schwinger Thomas-Fermi model: The leading correction , 1980 .

[7]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[9]  R. Parr,et al.  Statistical atomic models with piecewise exponentially decaying electron densities , 1977 .

[10]  Wen-ping Wang,et al.  Comparative study of the gradient expansion of the atomic kinetic energy functional‐neutral atoms , 1980 .

[11]  W. Kutzelnigg,et al.  Correlation Coefficients for Electronic Wave Functions , 1968 .

[12]  P. Acharya,et al.  An atomic kinetic energy functional with full Weizsacker correction. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Roy G. Gordon,et al.  Study of the electron gas approximation , 1974 .

[14]  R. Parr,et al.  On the Quantum‐Mechanical Kinetic Energy as a Measure of the Information in a Distribution , 1980 .

[15]  K. J. L. Couteur The Dirac density matrix , 1964 .

[16]  J. A. Alonso,et al.  Nonlocal approximation to the exchange potential and kinetic energy of an inhomogeneous electron gas , 1978 .

[17]  E. Fermi Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .

[18]  R. Parr,et al.  Gradient expansion of the atomic kinetic energy functional , 1976 .

[19]  B. Y. Tong EXCHANGE- AND CORRELATION-ENERGY CALCULATIONS IN FINITE SYSTEMS. , 1971 .

[20]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[21]  E. Lieb,et al.  Thomas-Fermi Theory Revisited , 1973 .