Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials

[1]  Christian Linder,et al.  A homogenization approach for nonwoven materials based on fiber undulations and reorientation , 2014 .

[2]  Timon Rabczuk,et al.  Detection of flaws in piezoelectric structures using extended FEM , 2013 .

[3]  Christian Linder,et al.  A marching cubes based failure surface propagation concept for three‐dimensional finite elements with non‐planar embedded strong discontinuities of higher‐order kinematics , 2013 .

[4]  Eliot Fried,et al.  Sharp-crack limit of a phase-field model for brittle fracture , 2013 .

[5]  Cv Clemens Verhoosel,et al.  A phase‐field model for cohesive fracture , 2013 .

[6]  Michael J. Borden,et al.  A phase-field model for fracture in piezoelectric ceramics , 2013, International Journal of Fracture.

[7]  Christian Miehe,et al.  A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns , 2013 .

[8]  Christian Linder,et al.  A strong discontinuity approach on multiple levels to model solids at failure , 2013 .

[9]  Youhe Zhou,et al.  The mechanical crack tip opening displacement fracture criterion in piezoelectric ceramics , 2012 .

[10]  Irene Arias,et al.  Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions , 2012 .

[11]  G. Herrmann,et al.  Mechanics in Material Space: with Applications to Defect and Fracture Mechanics , 2012 .

[12]  F. Armero,et al.  Three‐dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range , 2012 .

[13]  T. Rabczuk,et al.  Extended finite element method for dynamic fracture of piezo-electric materials , 2012 .

[14]  Mykola Tkachuk,et al.  The maximal advance path constraint for the homogenization of materials with random network microstructure , 2012 .

[15]  Christian Miehe,et al.  Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation , 2012, International Journal of Fracture.

[16]  Christian Miehe,et al.  Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics , 2012 .

[17]  M. Kuna,et al.  Evaluation of electromechanical fracture behavior by configurational forces in cracked ferroelectric polycrystals , 2012 .

[18]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[19]  Francisco Armero,et al.  Strong discontinuities in antiplane/torsional problems of computational failure mechanics , 2012, International Journal of Fracture.

[20]  R. Müller,et al.  Computational Homogenization of Piezoelectric Materials using FE 2 to determine Configurational Forces , 2012 .

[21]  Christian Miehe,et al.  A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity , 2011 .

[22]  Jörn Mosler,et al.  Effective 3D failure simulations by combining the advantages of embedded Strong Discontinuity Approaches and classical interface elements , 2011 .

[23]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[24]  Rama Bhargava,et al.  A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method , 2011 .

[25]  Christian Miehe,et al.  New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids , 2011 .

[26]  Ralf Müller,et al.  A NEW FINITE ELEMENT TECHNIQUE FOR A PHASE FIELD MODEL OF BRITTLE FRACTURE , 2011 .

[27]  Gérard A. Maugin,et al.  Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics , 2010 .

[28]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[29]  Christian Miehe,et al.  A phase field model of electromechanical fracture , 2010 .

[30]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[31]  D. Gross,et al.  Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable , 2010 .

[32]  B. Xu,et al.  Phase field simulation of domain structures in cracked ferroelectrics , 2010 .

[33]  M. Kuna Fracture mechanics of piezoelectric materials – Where are we right now? , 2010 .

[34]  Francisco Armero,et al.  Numerical simulation of dynamic fracture using finite elements with embedded discontinuities , 2009 .

[35]  Ercan Gürses,et al.  A computational framework of three-dimensional configurational-force-driven brittle crack propagation , 2009 .

[36]  Meinhard Kuna,et al.  Application of the X‐FEM to the fracture of piezoelectric materials , 2009 .

[37]  Francisco Armero,et al.  Finite elements with embedded branching , 2009 .

[38]  Francisco Armero,et al.  New finite elements with embedded strong discontinuities in the finite deformation range , 2008 .

[39]  Francisco Armero,et al.  Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .

[40]  Ercan Gürses,et al.  A robust algorithm for configurational‐force‐driven brittle crack propagation with R‐adaptive mesh alignment , 2007 .

[41]  Ercan Gürses,et al.  A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization , 2007 .

[42]  Francisco Armero,et al.  Finite element methods for the multi-scale modeling of softening hinge lines in plates at failure , 2006 .

[43]  D. Gross,et al.  Driving forces on domain walls in ferroelectric materials and interaction with defects , 2006 .

[44]  J. Huber Micromechanical modelling of ferroelectrics , 2005 .

[45]  Francisco Armero,et al.  Finite element methods for the analysis of softening plastic hinges in beams and frames , 2005 .

[46]  Herbert Balke,et al.  Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads , 2005 .

[47]  G. Schneider,et al.  Measurement of energy release rates for cracks in PZT under electromechanical loads , 2005 .

[48]  Chad M. Landis,et al.  Energetically consistent boundary conditions for electromechanical fracture , 2004 .

[49]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[50]  Peter Hansbo,et al.  Adaptive strategies and error control for computing material forces in fracture mechanics , 2004 .

[51]  A. Huespe,et al.  Continuum approach to the numerical simulation of material failure in concrete , 2004 .

[52]  Chad M. Landis,et al.  Non-linear constitutive modeling of ferroelectrics , 2004 .

[53]  Jörg Schröder,et al.  Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials , 2004 .

[54]  Jörn Mosler,et al.  3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations , 2003 .

[55]  Esteban Samaniego,et al.  On the strong discontinuity approach in finite deformation settings , 2003 .

[56]  Francisco Armero,et al.  Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media , 2002 .

[57]  R. Mueller,et al.  On material forces and finite element discretizations , 2002 .

[58]  Dietmar Gross,et al.  On configurational forces in the context of the finite element method , 2002 .

[59]  Michael Ortiz,et al.  An Efficient Adaptive Procedure for Three-Dimensional Fragmentation Simulations , 2001, Engineering with Computers.

[60]  Tong-Yi Zhang,et al.  Fracture of piezoelectric ceramics , 2002 .

[61]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[62]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[63]  R. McMeeking Towards a fracture mechanics for brittle piezoelectric and dielectric materials , 2001 .

[64]  Tong-Yi Zhang,et al.  Effects of an Electric Field on the Fracture Toughness of Poled Lead Zirconate Titanate Ceramics , 2004 .

[65]  Ronaldo I. Borja,et al.  A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation , 2000 .

[66]  D. Fang,et al.  Energy analysis on fracture of ferroelectric ceramics , 2000 .

[67]  Toshihisa Nishioka,et al.  Fracture of piezoelectric materials: energy density criterion , 2000 .

[68]  Richard A. Regueiro,et al.  A finite element model of localized deformation in frictional materials taking a strong discontinuity approach , 1999 .

[69]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[70]  Robert M. McMeeking,et al.  Crack tip energy release rate for a piezoelectric compact tension specimen , 1999 .

[71]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[72]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[73]  P. Steinmann,et al.  A finite element formulation for strong discontinuities in fluid‐saturated porous media , 1999 .

[74]  Hongyu Wang,et al.  Crack propagation in piezoelectric ceramics: Effects of applied electric fields , 1997 .

[75]  Huajian Gao,et al.  Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic , 1997 .

[76]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[77]  C. Sun,et al.  Fracture Criteria for Piezoelectric Ceramics , 1995 .

[78]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[79]  Hao Tian-hu,et al.  A new electric boundary condition of electric fracture mechanics and its applications , 1994 .

[80]  A. G. Tobin,et al.  Effect of electric fields on fracture behavior of PZT ceramics , 1993, Smart Structures.

[81]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[82]  Zhigang Suo,et al.  Fracture mechanics for piezoelectric ceramics , 1992 .

[83]  Y. E. Pak,et al.  Linear electro-elastic fracture mechanics of piezoelectric materials , 1992 .

[84]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[85]  Y. Pak,et al.  Crack Extension Force in a Piezoelectric Material , 1990 .

[86]  G. Herrmann,et al.  Conservation laws and the material momentum tensor for the elastic dielectric , 1986 .

[87]  W. Deeg,et al.  The analysis of dislocation, crack, and inclusion problems in piezoelectric solids , 1980 .

[88]  Vladimir Z. Parton,et al.  Fracture mechanics of piezoelectric materials , 1976 .

[89]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[90]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .