Guided exploration of user groups

Finding a set of users of interest serves several applications in behavioral analytics. Often times, identifying users requires to explore the data and gradually choose potential targets. This is a special case of Exploratory Data Analysis (EDA), an iterative and tedious process. In this paper, we formalize and solve the problem of guided exploration of user groups whose purpose is to find target users. We model exploration as an iterative decision-making process, where an agent is shown a set of groups, chooses users from those groups, and selects the best action to move to the next step. To solve our problem, we apply reinforcement learning to discover an efficient exploration strategy from a simulated agent experience, and propose to use the learned strategy to recommend an exploration policy that can be applied to the same task for any dataset. Our framework accepts a wide class of exploration actions and does not need to gather exploration logs. Our experiments show that the agent naturally captures manual exploration by human analysts, and succeeds to learn an interpretable and transferable exploration policy.

[1]  George Valkanas,et al.  Understanding Within-Content Engagement through Pattern Analysis of Mouse Gestures , 2014, CIKM.

[2]  Sihem Amer-Yahia,et al.  Efficient sentiment correlation for large-scale demographics , 2013, SIGMOD '13.

[3]  Arnab Nandi,et al.  Distributed and interactive cube exploration , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[4]  Dan Suciu,et al.  SnipSuggest: Context-Aware Autocompletion for SQL , 2010, Proc. VLDB Endow..

[5]  Arnab Nandi,et al.  FluxQuery: An Execution Framework for Highly Interactive Query Workloads , 2016, SIGMOD Conference.

[6]  Tova Milo,et al.  Automatically Generating Data Exploration Sessions Using Deep Reinforcement Learning , 2020, SIGMOD Conference.

[7]  Matteo Golfarelli,et al.  A collaborative filtering approach for recommending OLAP sessions , 2015, Decis. Support Syst..

[8]  Yi Zhang,et al.  Interactive retrieval based on faceted feedback , 2010, SIGIR '10.

[9]  Dino Pedreschi,et al.  ExAnte: Anticipated Data Reduction in Constrained Pattern Mining , 2003, PKDD.

[10]  John T. Stasko,et al.  Interactive Browsing and Navigation in Relational Databases , 2016, Proc. VLDB Endow..

[11]  Tova Milo,et al.  ATENA: An Autonomous System for Data Exploration Based on Deep Reinforcement Learning , 2019, CIKM.

[12]  Cong Yu,et al.  Who Tags What? An Analysis Framework , 2012, Proc. VLDB Endow..

[13]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[14]  Evaggelia Pitoura,et al.  YmalDB: exploring relational databases via result-driven recommendations , 2013, The VLDB Journal.

[15]  Hongbo Deng,et al.  Behavior Driven Topic Transition for Search Task Identification , 2016, WWW.

[16]  Themis Palpanas,et al.  New Trends on Exploratory Methods for Data Analytics , 2017, Proc. VLDB Endow..

[17]  Xia Feng,et al.  Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey , 2017, Multimedia Tools and Applications.

[18]  Hongxia Jin,et al.  EpicRec: Towards Practical Differentially Private Framework for Personalized Recommendation , 2016, CCS.

[19]  Neoklis Polyzotis,et al.  QueRIE: Collaborative Database Exploration , 2014, IEEE Transactions on Knowledge and Data Engineering.

[20]  Letizia Tanca,et al.  Context Support for Designing Analytical Queries , 2012, ArtDeco.

[21]  Nimrod Megiddo,et al.  Discovery-Driven Exploration of OLAP Data Cubes , 1998, EDBT.

[22]  Tova Milo,et al.  Predicting "What is Interesting" by Mining Interactive-Data-Analysis Session Logs , 2019, EDBT.

[23]  KahngMinsuk,et al.  Interactive browsing and navigation in relational databases , 2016, VLDB 2016.

[24]  H. V. Jagadish,et al.  DBExplorer: Exploratory Search in Databases , 2016, EDBT.

[25]  Yi Yang,et al.  Diversified Temporal Subgraph Pattern Mining , 2016, KDD.

[26]  Neoklis Polyzotis,et al.  Query Recommendations for Interactive Database Exploration , 2009, SSDBM.

[27]  Gautam Das,et al.  Facetedpedia: enabling query-dependent faceted search for wikipedia , 2010, CIKM '10.

[28]  Marti A. Hearst Clustering versus faceted categories for information exploration , 2006, Commun. ACM.

[29]  Sihem Amer-Yahia,et al.  User Group Analytics: Discovery, Exploration and Visualization , 2018, CIKM.

[30]  Aditya G. Parameswaran,et al.  Interactive data exploration with smart drill-down , 2014, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[31]  Salvatore Orlando,et al.  ConQueSt: a Constraint-based Querying System for Exploratory Pattern Discovery , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[32]  Hiroki Arimura,et al.  LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets , 2004, FIMI.

[33]  Wei Chu,et al.  A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.

[34]  Patrick Marcel,et al.  A survey of query recommendation techniques for data warehouse exploration , 2011, EDA.

[35]  Stefan Wrobel,et al.  A sequential sampling algorithm for a general class of utility criteria , 2000, KDD '00.

[36]  Sihem Amer-Yahia,et al.  Visual exploration of rating datasets and user groups , 2020, Future Gener. Comput. Syst..

[37]  Tova Milo,et al.  Next-Step Suggestions for Modern Interactive Data Analysis Platforms , 2018, KDD.

[38]  Grace Hui Yang,et al.  DeepTileBars: Visualizing Term Distribution for Neural Information Retrieval , 2019, AAAI.

[39]  Alexandre Termier,et al.  Interactive User Group Analysis , 2015, CIKM.

[40]  Laks V. S. Lakshmanan,et al.  Exploring Rated Datasets with Rating Maps , 2017, WWW.

[41]  Shuai Li,et al.  Collaborative Filtering Bandits , 2015, SIGIR.

[42]  Andreas Hotho,et al.  Mining Subgroups with Exceptional Transition Behavior , 2016, KDD.

[43]  Christos Faloutsos,et al.  Come-and-Go Patterns of Group Evolution: A Dynamic Model , 2016, KDD.

[44]  Sihem Amer-Yahia,et al.  User Group Analytics Survey and Research Opportunities , 2020, IEEE Transactions on Knowledge and Data Engineering.