Practical Sparse Modeling An Overview and Two Examples from Genetics

This chapter contains sections titled: 1 Sparse Modeling Road Map, 2 Example 1: Genome-Wide Association Studies (GWAS), 3 Example 2: Gene Microarray Data Analysis, 4 Random Lasso, 5 Summary, Note, References

[1]  Gareth M. James,et al.  Variable Inclusion and Shrinkage Algorithms , 2008 .

[2]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[3]  K. Lange,et al.  Prioritizing GWAS results: A review of statistical methods and recommendations for their application. , 2010, American journal of human genetics.

[4]  N. Meinshausen,et al.  LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.

[5]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[6]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[7]  E. Candès,et al.  Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.

[8]  D. Cavalieri,et al.  Fundamentals of cDNA microarray data analysis. , 2003, Trends in genetics : TIG.

[9]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[10]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[11]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[12]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[13]  Teri A Manolio,et al.  Genomewide association studies and assessment of the risk of disease. , 2010, The New England journal of medicine.

[14]  E. Davidson,et al.  Gene regulatory networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[16]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.