Hölder-Minkowski type inequality for generalized Sugeno integral

Abstract We give a necessary and sufficient condition for validity of the Holder-Minkowski type inequality for the generalized Sugeno integral, any monotone measure and the class of ⋆-associated functions. We also show a connection between integral inequalities and the problem of finding binary operations satisfying the distributivity inequalities. We characterize all semicopulas satisfying Holder and Minkowski inequalities for the seminormed fuzzy integral. One result has been obtained for the recently introduced q-integral. We describe the relationships among the existing sufficient conditions and show that our result generalizes most known Holder-Minkowski type inequalities for comonotone functions in the available literature. We also provide two other methods to get the above-mentioned inequality for the Sugeno integral and the class of m-subadditive functions as well as for the Sugeno integral of [ 0 , 1 ] -valued functions using a duality approach. We point out some flaws and correct the corresponding false statements appearing in the literature. At the end, we pose several problems and questions for further research.

[1]  Józef Drewniak,et al.  Subdistributivity and superdistributivity of binary operations , 2010, Fuzzy Sets Syst..

[2]  H. Agahi,et al.  Predictive tools in data mining and k-means clustering: Universal Inequalities , 2013 .

[3]  Esfandiar Eslami,et al.  A general inequality of Chebyshev type for semi(co)normed fuzzy integrals , 2010, Soft Comput..

[4]  Radko Mesiar,et al.  New general extensions of Chebyshev type inequalities for Sugeno integrals , 2009, Int. J. Approx. Reason..

[5]  Radko Mesiar,et al.  On Cauchy–Schwarz’s inequality for Choquet-like integrals without the comonotonicity condition , 2015, Soft Comput..

[6]  Radko Mesiar,et al.  Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators , 2010, Kybernetika.

[7]  Radko Mesiar,et al.  On the Chebyshev type inequality for seminormed fuzzy integral , 2009, Appl. Math. Lett..

[8]  Michal Boczek,et al.  On conditions under which some generalized Sugeno integrals coincide: A solution to Dubois' problem , 2017, Fuzzy Sets Syst..

[9]  H. Agahi,et al.  Extended Chebyshev type inequality for Sugeno integral , 2010, 2010 Annual Meeting of the North American Fuzzy Information Processing Society.

[10]  J. Matkowski On a generalization of mulholland’s inequality , 1993 .

[11]  Hamzeh Agahi,et al.  On an Extended Chebyshev Type inequality for Semi(Co)normed Fuzzy integrals , 2011, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  H. Mulholland On Generalizations of Minkowski's Inequality in the Form of a Triangle Inequality , 1949 .

[13]  Ondrej Hutník,et al.  The smallest semicopula-based universal integrals I: Properties and characterizations , 2015, Fuzzy Sets Syst..

[14]  Ewa Rak,et al.  Distributivity equations in the class of semi-t-operators , 2016, Fuzzy Sets Syst..

[15]  Ondrej Hutník,et al.  The smallest semicopula-based universal integrals II: Convergence theorems , 2015, Fuzzy Sets Syst..

[16]  Humberto Bustince,et al.  Ordered Directionally Monotone Functions: Justification and Application , 2018, IEEE Transactions on Fuzzy Systems.

[17]  Michal Baczynski On two distributivity equations for fuzzy implications and continuous, Archimedean t-norms and t-conorms , 2013, Fuzzy Sets Syst..

[18]  Józef Drewniak,et al.  Distributivity inequalities of monotonic operations , 2012, Fuzzy Sets Syst..

[19]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[20]  Liping Zhu,et al.  Hölder type inequality for Sugeno integral , 2010, Fuzzy Sets Syst..

[21]  Michal Boczek,et al.  On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application , 2015, Kybernetika.

[22]  N. Shilkret Maxitive measure and integration , 1971 .

[23]  Ondrej Hutník,et al.  General form of Chebyshev type inequality for generalized Sugeno integral , 2019, Int. J. Approx. Reason..

[24]  C. Sempi,et al.  Principles of Copula Theory , 2015 .

[25]  Radko Mesiar,et al.  General Minkowski type inequalities for Sugeno integrals , 2010, Fuzzy Sets Syst..

[26]  E. Eslami,et al.  On Non-additive Probabilistic Inequalities of Hölder-type , 2012 .

[27]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[28]  Radko Mesiar,et al.  A Universal Integral as Common Frame for Choquet and Sugeno Integral , 2010, IEEE Transactions on Fuzzy Systems.

[29]  F. García,et al.  Two families of fuzzy integrals , 1986 .

[30]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[31]  Dug Hun Hong,et al.  Hölder Type Inequalities for Sugeno Integrals under Usual Multiplication Operations , 2019, Adv. Fuzzy Syst..

[32]  Radko Mesiar,et al.  On some advanced type inequalities for Sugeno integral and T-(S-)evaluators , 2012, Inf. Sci..

[33]  Ondrej Hutník,et al.  On $\star$-associated comonotone functions , 2018, Kybernetika.

[34]  Didier Dubois,et al.  Generalized qualitative Sugeno integrals , 2017, Inf. Sci..

[35]  J. Caballero,et al.  A Cauchy–Schwarz type inequality for fuzzy integrals , 2010 .

[36]  Adel Mohammadpour,et al.  A generalization of the Chebyshev type inequalities for Sugeno integrals , 2012, Soft Comput..

[37]  Haruki Imaoka,et al.  On a Subjective Evaluation Model by a Generalized Fuzzy Integral , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[38]  Huawen Liu,et al.  The distributivity equation for uninorms revisited , 2018, Fuzzy Sets Syst..

[39]  Michal Boczek,et al.  Sharp bounds of Jensen type for the generalized Sugeno integral , 2018, Inf. Sci..

[40]  Ondrej Hutník,et al.  The smallest semicopula-based universal integrals III: Topology determined by the integral , 2016, Fuzzy Sets Syst..

[41]  Jana Borzová,et al.  The smallest semicopula-based universal integrals: Remarks and improvements , 2020, Fuzzy Sets Syst..

[42]  B. Daraby,et al.  General Minkowski type and related inequalities for seminormed fuzzy integrals , 2014 .

[43]  Radko Mesiar,et al.  General Chebyshev type inequalities for universal integral , 2012, Inf. Sci..

[44]  Michal Boczek,et al.  On Chebyshev type inequalities for generalized Sugeno integrals , 2014, Fuzzy Sets Syst..

[45]  Milan Petrík Dominance on strict triangular norms and Mulholland inequality , 2018, Fuzzy Sets Syst..