Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation

[1]  B. Sundberg,et al.  Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. , 2010, The Plant journal : for cell and molecular biology.

[2]  V. Legué,et al.  Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor , 2010 .

[3]  R. Bhalerao,et al.  The Ectomycorrhizal Fungus Laccaria bicolor Stimulates Lateral Root Formation in Poplar and Arabidopsis through Auxin Transport and Signaling1[W] , 2009, Plant Physiology.

[4]  I. Feussner,et al.  Truffles Regulate Plant Root Morphogenesis via the Production of Auxin and Ethylene1[C][W][OA] , 2009, Plant Physiology.

[5]  Jarmila Nahalkova,et al.  Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus. , 2008, Tree physiology.

[6]  R. Sederoff,et al.  Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor , 2008, BMC Plant Biology.

[7]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[8]  H. Solheim,et al.  Quantification of host and pathogen DNA and RNA transcripts in the interaction of Norway spruce with Heterobasidion parviporum , 2007 .

[9]  F. Tax,et al.  Functional analysis of receptor-like kinases in monocots and dicots. , 2006, Current opinion in plant biology.

[10]  M. Kawaguchi,et al.  Long-distance signaling to control root nodule number. , 2006, Current opinion in plant biology.

[11]  A. Pandey,et al.  The auxin-inducible GH3 homologue Pp-GH3.16 is downregulated in Pinus pinaster root systems on ectomycorrhizal symbiosis establishment. , 2006, The New phytologist.

[12]  J. B. Reid,et al.  Defective Long-Distance Auxin Transport Regulation in the Medicago truncatula super numeric nodules Mutant1[W] , 2006, Plant Physiology.

[13]  C. Ávila,et al.  Molecular characterization of a receptor-like protein kinase gene from pine (Pinus sylvestris L.) , 2006, Planta.

[14]  Julia Frugoli,et al.  The Medicago truncatula SUNN Gene Encodes a CLV1-like Leucine-rich Repeat Receptor Kinase that Regulates Nodule Number and Root Length , 2005, Plant Molecular Biology.

[15]  Tomas Johansson,et al.  Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. , 2005, Molecular plant-microbe interactions : MPMI.

[16]  Klaus F. X. Mayer,et al.  Comparative Analysis of the Receptor-Like Kinase Family in Arabidopsis and Rice , 2004, The Plant Cell Online.

[17]  R. Sederoff,et al.  An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein , 2004, Planta.

[18]  R. Whetten,et al.  Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda). , 2003, Tree physiology.

[19]  G. Podila,et al.  Fungal gene expression in early symbiotic interactions between Laccaria bicolor and red pine , 2002, Plant and Soil.

[20]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[21]  R. Marmeisse,et al.  Characterization of an Aux/IAA cDNA upregulated in Pinus pinaster roots in response to colonization by the ectomycorrhizal fungus Hebeloma cylindrosporum. , 2002, The New phytologist.

[22]  G. Horgan,et al.  Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR , 2002 .

[23]  Klaus Palme,et al.  Auxin transport inhibitors block PIN1 cycling and vesicle trafficking , 2001, Nature.

[24]  S. Shiu,et al.  Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Tagu,et al.  The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses , 2000, Journal of Plant Growth Regulation.

[26]  D. Cullen,et al.  A Homokaryotic Derivative of a Phanerochaete chrysosporium Strain and Its Use in Genomic Analysis of Repetitive Elements , 2000, Applied and Environmental Microbiology.

[27]  D. D. Kaska,et al.  Auxin transport inhibitors act through ethylene to regulate dichotomous branching of lateral root meristems in pine , 1999 .

[28]  P. Gamas,et al.  Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. , 1996, Molecular plant-microbe interactions : MPMI.

[29]  J. Debaud,et al.  Auxin overproducer mutants of Hebeloma cylindrosporum Romagnesi have increased mycorrhizal activity , 1994 .

[30]  J. Cairney,et al.  A simple and efficient method for isolating RNA from pine trees , 1993, Plant Molecular Biology Reporter.

[31]  D. Read,et al.  Mycorrhizas in ecosystems , 1991, Experientia.

[32]  J. Stenlid Population structure of Heterobasidion annosum as determined by somatic incompatibility, sexual incompatibility, and isoenzyme patterns , 1985 .

[33]  M. Ek,et al.  INDOLE‐3‐ACETIC ACID PRODUCTION BY MYCORRHIZAL FUNGI DETERMINED BY GAS CHROMATOGRAPHY‐MASS SPECTROMETRY , 1983 .

[34]  F. Lapeyrie,et al.  Jasmonates, together with zeatin, induce hypaphorine accumulation by the ectomycorrhizal fungus Pisolithus microcarpus , 2005 .

[35]  A. Polle,et al.  Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus x canescens) differ in H2O2 production. , 2004, Plant biology.

[36]  S. Duplessis,et al.  Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. , 2001, The Plant journal : for cell and molecular biology.

[37]  N. Kalkkinen,et al.  Scots pine expresses short-root-specific peroxidases during development. , 2001, European journal of biochemistry.

[38]  Å. Frostegård,et al.  Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. , 1992 .

[39]  D. Marx The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria , 1969 .

[40]  C. Geilfus Mycorrhiza , 1927, Nature.