High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica

[1]  Ashwin Chari,et al.  Breaking the next Cryo-EM resolution barrier – Atomic resolution determination of proteins! , 2020, bioRxiv.

[2]  C. Wong urease , 2020, Catalysis from A to Z.

[3]  Sjors H W Scheres,et al.  Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1 , 2020, IUCrJ.

[4]  M. Yeager,et al.  CryoEM maps are full of potential. , 2019, Current opinion in structural biology.

[5]  L. Mazzei,et al.  The impact of pH on catalytically critical protein conformational changes: the case of the urease, a nickel enzyme. , 2019, Chemistry.

[6]  L. Mazzei,et al.  The Structure of the Elusive Urease-Urea Complex Unveils the Mechanism of a Paradigmatic Nickel-Dependent Enzyme. , 2019, Angewandte Chemie.

[7]  Isabella Haberbosch,et al.  Software tools for automated transmission electron microscopy , 2018, Nature Methods.

[8]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[9]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[10]  Jasenko Zivanov,et al.  A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis , 2018, bioRxiv.

[11]  C. Carlini,et al.  Ureases: Historical aspects, catalytic, and non-catalytic properties – A review , 2018, Journal of advanced research.

[12]  Tamir Gonen,et al.  Analysis of global and site-specific radiation damage in cryo-EM , 2018, bioRxiv.

[13]  William J. Rice,et al.  High Resolution Single Particle Cryo-Electron Microscopy using Beam-Image Shift , 2018, bioRxiv.

[14]  Thomas C Terwilliger,et al.  New tools for the analysis and validation of cryo-EM maps and atomic models , 2018, bioRxiv.

[15]  Tamir Gonen,et al.  Analysis of global and site-specific radiation damage in cryo-EM , 2018, bioRxiv.

[16]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[17]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[18]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[19]  C. Russo,et al.  Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy , 2017, Nature Communications.

[20]  L. Mazzei,et al.  Urease Inhibition in the Presence of N-(n-Butyl)thiophosphoric Triamide, a Suicide Substrate: Structure and Kinetics. , 2017, Biochemistry.

[21]  Henning Stahlberg,et al.  Focus: The interface between data collection and data processing in cryo-EM. , 2017, Journal of structural biology.

[22]  L. Mazzei,et al.  CHAPTER 5:Urease , 2017 .

[23]  Andrej Bieri,et al.  Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts. , 2017, Journal of structural biology.

[24]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[25]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[26]  Kenneth N. Goldie,et al.  Focus: The interface between data collection and data processing in cryo-EM , 2017, bioRxiv.

[27]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[28]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[29]  Nikolaus Grigorieff,et al.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015, eLife.

[30]  Tanmay A.M. Bharat,et al.  Seeing tobacco mosaic virus through direct electron detectors , 2015, Journal of structural biology.

[31]  L. Mazzei,et al.  Fluoride inhibition of Sporosarcina pasteurii urease: structure and thermodynamics , 2014, JBIC Journal of Biological Inorganic Chemistry.

[32]  S. Ciurli,et al.  Nonredox nickel enzymes. , 2014, Chemical reviews.

[33]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[34]  A. Steven,et al.  One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. , 2013, Journal of structural biology.

[35]  C. Carlini,et al.  3-to-1: unraveling structural transitions in ureases , 2013, Naturwissenschaften.

[36]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[37]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[38]  M. Prentice,et al.  Yersinia enterocolitica: a brief review of the issues relating to the zoonotic pathogen, public health challenges, and the pork production chain. , 2012, Foodborne pathogens and disease.

[39]  A. Cheng,et al.  Beam-induced motion of vitrified specimen on holey carbon film. , 2012, Journal of structural biology.

[40]  C. Carlini,et al.  Characterization of JBURE-IIb isoform of Canavalia ensiformis (L.) DC urease. , 2011, Biochimica et biophysica acta.

[41]  J. S. Virdi,et al.  Molecular and biochemical characterization of urease and survival of Yersinia enterocolitica biovar 1A in acidic pH in vitro , 2009, BMC Microbiology.

[42]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[43]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[44]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[45]  Uwe Bergmann,et al.  X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.

[47]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[48]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[49]  Piero Fariselli,et al.  ConSeq: the identification of functionally and structurally important residues in protein sequences , 2004, Bioinform..

[50]  K. Merz,et al.  Ureases: quantum chemical calculations on cluster models. , 2003, Journal of the American Chemical Society.

[51]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[52]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[53]  Nam-Chul Ha,et al.  Supramolecular assembly and acid resistance of Helicobacter pylori urease , 2001, Nature Structural Biology.

[54]  M. Skurnik,et al.  Construction of Urease-Negative Mutants of Yersinia enterocolitica Serotypes O:3 and O:8: Role of Urease in Virulence and Arthritogenicity , 2000, Infection and Immunity.

[55]  E. Rokita,et al.  Purification of surface-associated urease from Helicobacter pylori. , 2000, Journal of chromatography. B, Biomedical sciences and applications.

[56]  K. Wilson,et al.  A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. , 1999, Structure.

[57]  R. Podschun,et al.  Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors , 1998, Clinical Microbiology Reviews.

[58]  Eugen Ermantraut,et al.  Perforated support foils with pre-defined hole size, shape and arrangement , 1998 .

[59]  K. Wilson,et al.  The complex of Bacillus pasteurii urease with β-mercaptoethanol from X-ray data at 1.65-Å resolution , 1998, JBIC Journal of Biological Inorganic Chemistry.

[60]  P. Karplus,et al.  Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease. , 1997, Biochemistry.

[61]  G. Young,et al.  A bifunctional urease enhances survival of pathogenic Yersinia enterocolitica and Morganella morganii at low pH , 1996, Journal of bacteriology.

[62]  Robert P. Hausinger,et al.  The crystal structure of urease from Klebsiella aerogenes. , 1995, Science.

[63]  J. Dewan Structure Determination by X-ray Crystallography , 1986 .

[64]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[65]  N. Dixon,et al.  Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? , 1975, Journal of the American Chemical Society.

[66]  M. W. Weatherburn Phenol-hypochlorite reaction for determination of ammonia , 1967 .

[67]  J. Sumner THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE PRELIMINARY PAPER , 1926 .