Test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire microwave oscillators.

We present the first results from a rotating Michelson-Morley experiment that uses two orthogonally orientated cryogenic sapphire resonator oscillators operating in whispering gallery modes near 10 GHz. The experiment is used to test for violations of Lorentz invariance in the framework of the photon sector of the standard model extension (SME), as well as the isotropy term of the Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously unmeasured kappa(ZZ)(e-) component of 2.1(5.7) x 10(-14), and set more stringent bounds by up to a factor of 7 on seven other components. In the RMS a more stringent bound of -0.9(2.0) x 10(-10) on the isotropy parameter, P(MM) = delta-beta + 1 / 2 is set, which is more than a factor of 7 improvement.

[1]  A. Kostelecký,et al.  $CPT$ violation and the standard model , 1997, hep-ph/9703464.

[2]  P. Antonini,et al.  Test of constancy of speed of light with rotating cryogenic optical resonators , 2005 .

[3]  Michael E. Tobar,et al.  Improved test of Lorentz invariance in electrodynamics , 2004, hep-ph/0407232.

[4]  A. Mann Ultrastable Cryogenic Microwave Oscillators , 2001 .

[5]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[6]  A. Lightman,et al.  Restricted Proof that the Weak Equivalence Principle Implies the Einstein Equivalence Principle , 1973 .

[7]  André Clairon,et al.  Tests of Lorentz invariance using a microwave resonator. , 2003, Physical review letters.

[8]  A. Brillet,et al.  Improved Laser Test of the Isotropy of Space , 1979 .

[9]  A. Michelson,et al.  On the relative motion of the Earth and the luminiferous ether , 1887, American Journal of Science.

[10]  Wei-Tou Ni,et al.  Equivalence Principles and Electromagnetism , 1977 .

[11]  David Blair,et al.  A very high stability sapphire loaded superconducting cavity oscillator , 1990 .

[12]  Alan Kostelecky,et al.  Lorentz-Violating Extension of the Standard Model , 1998 .

[13]  S. Reinhardt,et al.  Improved test of time dilation in special relativity. , 2003, Physical review letters.

[14]  Michael E. Tobar,et al.  Whispering Gallery Resonators and Tests of Lorentz Invariance , 2004 .

[15]  Proposal for a new Michelson-Morley experiment using a single whispering spherical mode resonator , 2002, gr-qc/0207067.

[16]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[17]  Herbert E. Ives,et al.  An Experimental Study of the Rate of a Moving Atomic Clock , 1938 .

[18]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[19]  R. Sexl,et al.  A test theory of special relativity: I. Simultaneity and clock synchronization , 1977 .

[20]  Michael E. Tobar,et al.  Resonant frequencies of higher order modes in cylindrical anisotropic dielectric resonators , 1991 .

[21]  Achim Peters,et al.  Modern Michelson-Morley experiment using cryogenic optical resonators. , 2003, Physical review letters.

[22]  New limit on signals of Lorentz violation in electrodynamics. , 2003, Physical review letters.

[23]  Edward M. Thorndike,et al.  Experimental Establishment of the Relativity of Time , 1932 .

[24]  H. P. Robertson Postulate versus Observation in the Special Theory of Relativity , 1949 .

[25]  A. Kostelecký,et al.  Signals for Lorentz violation in electrodynamics , 2002, hep-ph/0205211.

[26]  J. Hartnett,et al.  Frequency-Temperature Compensation Techniques for High- Q Microwave Resonators , 2001 .