Quantile Regression : 40 Years On

Since Quetelet’s work in the 19th century social science has iconified “the average man,” that hypothetical man without qualities who is comfortable with his head in the oven, and his feet in a bucket of ice. Conventional statistical methods, since Quetelet, have sought to estimate the effects of policy treatments for this average man. But such effects are often quite heterogenous: medical treatments may improve life expectancy, but also impose serious short term risks; reducing class sizes may improve performance of good students, but not help weaker ones or vice versa. Quantile regression methods can help to explore these heterogeneous effects. Some recent developments in quantile regression methods are surveyed below.

[1]  Rui Song,et al.  Quantile-Optimal Treatment Regimes , 2018, Journal of the American Statistical Association.

[2]  N. Narisetty,et al.  A New Approach to Censored Quantile Regression Estimation , 2018 .

[3]  Ying Wei Quantile Regression with Measurement Errors and Missing Data , 2017 .

[4]  Holger Dette,et al.  Quantile Spectral Processes: Asymptotic Analysis and Inference , 2014, 1401.8104.

[5]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[6]  Deyuan Li,et al.  Estimation of High Conditional Quantiles for Heavy-Tailed Distributions , 2012 .

[7]  Kengo Kato,et al.  Asymptotics for panel quantile regression models with individual effects , 2012 .

[8]  Kengo Kato,et al.  Estimation in functional linear quantile regression , 2012, 1202.4850.

[9]  E. Mammen,et al.  Backfitting and smooth backfitting for additive quantile models , 2010, 1011.2592.

[10]  R. Koenker Additive models for quantile regression: Model selection and confidence bandaids , 2010 .

[11]  Carlos Lamarche,et al.  Robust penalized quantile regression estimation for panel data , 2010 .

[12]  Limin Peng,et al.  Survival Analysis With Quantile Regression Models , 2008 .

[13]  Linglong Kong,et al.  Quantile tomography: using quantiles with multivariate data , 2008, Statistica Sinica.

[14]  Susanne M. Schennach QUANTILE REGRESSION WITH MISMEASURED COVARIATES , 2008, Econometric Theory.

[15]  Xuming He,et al.  Power Transformation Toward a Linear Regression Quantile , 2007 .

[16]  R. Koenker Quantile regression for longitudinal data , 2004 .

[17]  R. Koenker,et al.  Penalized triograms: total variation regularization for bivariate smoothing , 2004 .

[18]  R. Koenker,et al.  Quantile regression methods for recursive structural equation models , 2004 .

[19]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[20]  C. Manski Statistical treatment rules for heterogeneous populations , 2003 .

[21]  Sokbae Lee,et al.  EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003, Econometric Theory.

[22]  J. Mata,et al.  BOX-COX QUANTILE REGRESSION AND THE DISTRIBUTION OF FIRM SIZES , 2000 .

[23]  R. Koenker,et al.  An interior point algorithm for nonlinear quantile regression , 1996 .

[24]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[25]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[26]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[27]  D. Schmeidler Integral representation without additivity , 1986 .

[28]  C. Manski MAXIMUM SCORE ESTIMATION OF THE STOCHASTIC UTILITY MODEL OF CHOICE , 1975 .

[29]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[30]  E. M. Elderton THE LANARKSHIRE MILK EXPERIMENT , 1933 .

[31]  Marie Schmidt,et al.  Nonparametrics Statistical Methods Based On Ranks , 2016 .

[32]  Rosa L. Matzkin Estimation of Nonparametric Models With Simultaneity , 2015 .

[33]  R. Koenker,et al.  Regression Quantiles , 2007 .

[34]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[35]  E. Khmaladze,et al.  Martingale Approach in the Theory of Goodness-of-Fit Tests , 1982 .

[36]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[37]  K. Knight Second order improvements of sample quantiles using subsamples , 2022 .