Sentiment Analysis and Topic Detection of Spanish Tweets: A Comparative Study of NLP Techniques (Análisis de sentimientos y detección de asunto de tweets en español: un estudio comparativo de técnicas de PLN)

A significant amount of effort is been invested in constructing effective solutions for sentiment analysis and topic detection, but mostly for English texts. Using a corpus of Spanish tweets, we present a comparative analysis of different approaches and classification techniques for these problems.

[1]  Karen Kukich,et al.  Techniques for automatically correcting words in text , 1992, CSUR.

[2]  Jonathon Read,et al.  Using Emoticons to Reduce Dependency in Machine Learning Techniques for Sentiment Classification , 2005, ACL.

[3]  Evgeniy Gabrilovich,et al.  Feature Generation for Text Categorization Using World Knowledge , 2005, IJCAI.

[4]  Somnath Banerjee,et al.  Clustering short texts using wikipedia , 2007, SIGIR.

[5]  Fermín L. Cruz,et al.  Clasificación de documentos basada en la opinión: experimentos con un corpus de críticas de cine en español , 2008, Proces. del Leng. Natural.

[6]  Maite Taboada,et al.  Cross-Linguistic Sentiment Analysis: From English to Spanish , 2009, RANLP.

[7]  Ning Liu,et al.  Topic Detection and Tracking , 2009, Encyclopedia of Database Systems.

[8]  Nick Koudas,et al.  TwitterMonitor: trend detection over the twitter stream , 2010, SIGMOD Conference.

[9]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[10]  Eneko Agirre,et al.  Semantic Services in FreeLing 2.1: WordNet and UKB , 2010 .

[11]  Eugénio C. Oliveira,et al.  Tokenizing micro-blogging messages using a text classification approach , 2010, AND '10.

[12]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[13]  Alan F. Smeaton,et al.  Classifying sentiment in microblogs: is brevity an advantage? , 2010, CIKM.

[14]  Hakan Ferhatosmanoglu,et al.  Short text classification in twitter to improve information filtering , 2010, SIGIR.

[15]  T. Justin,et al.  Comparison of different classification methods for emotion recognition , 2010, The 33rd International Convention MIPRO.

[16]  Luis Alfonso Ureña López,et al.  Opinion Classification Techniques Applied to a Spanish Corpus , 2011, NLDB.

[17]  Elahe Rahimtoroghi,et al.  Wikipedia-Based Smoothing for Enhancing Text Clustering , 2011, AIRS.

[18]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[19]  Alok N. Choudhary,et al.  Twitter Trending Topic Classification , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[20]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[21]  Alexander F. Gelbukh,et al.  Empirical Study of Machine Learning Based Approach for Opinion Mining in Tweets , 2012, MICAI.

[22]  Athena Vakali,et al.  Social networking trends and dynamics detection via a cloud-based framework design , 2012, WWW.