A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions

H1, independently of the discretization method chosen. In particular, our error estimator can be applied also to problems and discretizations where the Galerkin orthogonality is not available. We will present different strategies for the evaluation of the error estimator. Only one constant appears in its definition which is the one from Friedrichs' inequality; that constant depends solely on the domain geometry, and the estimator is quite non-sensitive to the error in the constant evaluation. Finally, we show how accurately the estimator captures the local error distribution, thus, creating a base for a justified adaptivity of an approximation.

[1]  Philippe Blanchard,et al.  Variational Methods in Mathematical Physics , 1992 .

[2]  Willy Dörfler,et al.  An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..

[3]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[4]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[5]  Sergey Repin,et al.  A posteriori error estimation for nonlinear variational problems by duality theory , 2000 .

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[7]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[8]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[9]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[10]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[11]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[12]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[13]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[14]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[15]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[16]  Philippe Angot,et al.  Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows , 1999 .

[17]  Mark Ainsworth,et al.  A Posteriori Error Estimators and Adaptivity for Finite Element Approximation of the Non-Homogeneous Dirichlet Problem , 2001, Adv. Comput. Math..

[18]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[19]  W. Hackbusch,et al.  Composite finite elements for the approximation of PDEs on domains with complicated micro-structures , 1997 .

[20]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[21]  Carsten Carstensen,et al.  A posteriori error analysis for elliptic pdes on domains with complicated structures , 2004, Numerische Mathematik.

[22]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[23]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[24]  Sergey I. Repin,et al.  A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..