Color Space Optimization for Lacunarity Method in Analysis of Papanicolaou Smears

There are numerous cells nuclei analysis algorithms. The lacunarity is the texture analysis algorithm and could be applied for binary or grayscale images of cells nuclei. The cells in Papanicolaou process are stained so numerous conversions to grayscale or binary images are possible. The optimization of RGB color space using weights is proposed for polynomial based analysis using lacunarity and the cell area of binary image. Obtained results show significant differences for best and worst cases for the number of cells of atypical and correct classes with similar cells area.

[1]  Andrzej Obuchowicz,et al.  Computational Intelligence Techniques in Image Segmentation for Cytopathology , 2008, Computational Intelligence in Biomedicine and Bioinformatics.

[2]  J. Purczynski,et al.  Estimation of the Fractal Dimension using Tiled Triangular Prism Method for Biological Non-Rectangular Objects , 2012 .

[3]  Neucimar J. Leite,et al.  The Fractal Dimension of Nuclear Chromatin as a Prognostic Factor in Acute Precursor B Lymphoblastic Leukemia , 2006, Cellular oncology : the official journal of the International Society for Cellular Oncology.

[4]  Dariusz Frejlichowski Detection of Erythrocyte Cells in Microscopy Images , 2012 .

[5]  Konradin Metze,et al.  Fractal Characteristics of May-Grünwald-Giemsa Stained Chromatin Are Independent Prognostic Factors for Survival in Multiple Myeloma , 2011, PloS one.

[6]  Pawel Forczmanski,et al.  Similarity Estimation of Textile Materials Based on Image Quality Assessment Methods , 2014, ICCVG.

[7]  W. Hargrove,et al.  Lacunarity analysis: A general technique for the analysis of spatial patterns. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Przemyslaw Mazurek,et al.  From the slit-island method to the Ising model: Analysis of irregular grayscale objects , 2014, Int. J. Appl. Math. Comput. Sci..

[9]  Józef Korbicz,et al.  Hough Transform, (1+1) Search Strategy and Watershed Algorithm in Segmentation of Cytological Images , 2008, Computer Recognition Systems 2.

[10]  Daniel L. Farkas,et al.  A novel scheme for abnormal cell detection in Pap smear images , 2004, SPIE BiOS.

[11]  Przemyslaw Mazurek,et al.  Estimation of Fractal Dimension According to Optical Density of Cell Nuclei in Papanicolaou Smears , 2012, ITIB.

[12]  Konradin Metze,et al.  Fractal dimension of chromatin and cancer prognosis. , 2010, Epigenomics.

[13]  S. Dutch,et al.  Linear Richardson plots from non-fractal data sets , 1993 .

[14]  W. Witkowski,et al.  "Komputerowa analiza obrazu biomedycznego. Wstęp do morfometrii i patologii ilościowej" (Krzysztof W. Zieliński, Michał Strzelecki) , 2003 .

[15]  Przemyslaw Mazurek,et al.  Variogram Based Estimator of Fractal Dimension for the Analysis of Cell Nuclei from the Papanicolaou Smears , 2012, IP&C.

[16]  Przemyslaw Mazurek,et al.  Lacunarity Based Estimator for the Analysis of Cell Nuclei from the Papanicolaou Smears , 2014, ICCVG.

[17]  Andrzej Obuchowicz,et al.  Automatic Nuclei Detection on Cytological Images Using the Firefly Optimization Algorithm , 2012, ITIB.

[18]  W. Adamowicz,et al.  Achieving Conservation when Opportunity Costs Are High: Optimizing Reserve Design in Alberta's Oil Sands Region , 2011, PloS one.

[19]  E. Cibas,et al.  Comprar Cytology. Diagnostic Principles And Clinical Correlates (Online And Print) 4th Ed. | Barbara Ducatman | 9781455744626 | Saunders , 2014 .