Cochleate characterization by cryogenic electron microscopy methods: Cryo-TEM and Cryo-SEM

[1]  M. Kellermayer,et al.  Extreme resilience in cochleate nanoparticles. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[2]  F. Schacher,et al.  Electron microscopy and theoretical modeling of cochleates. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[3]  D. Danino Cryo-TEM of soft molecular assemblies , 2012 .

[4]  A. Martín-Molina,et al.  Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations. , 2012, Biophysical journal.

[5]  Roi Asor,et al.  Entropic attraction condenses like-charged interfaces composed of self-assembled molecules. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[6]  V. Parsegian,et al.  Hydration forces: Observations, explanations, expectations, questions , 2011 .

[7]  D. Harries,et al.  Curvature instability in a chiral amphiphile self-assembly. , 2011, Physical review letters.

[8]  R. Epand,et al.  Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents , 2011, Cellular and Molecular Life Sciences.

[9]  R. Epand,et al.  Physical properties affecting cochleate formation and morphology using antimicrobial oligo-acyl-lysyl peptide mimetics and mixtures mimicking the composition of bacterial membranes in the absence of divalent cations. , 2011, The journal of physical chemistry. B.

[10]  S. Raghavan,et al.  Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. , 2011, Journal of the American Chemical Society.

[11]  T. Jin,et al.  Cochleates bridged by drug molecules. , 2008, International journal of pharmaceutics.

[12]  M. Arunagirinathan,et al.  Self-assembled surfactant nano-structures important in drug delivery: a review. , 2007, Indian journal of experimental biology.

[13]  N. Severs,et al.  Freeze-fracture electron microscopy , 2007, Nature Protocols.

[14]  Vladimir P. Torchilin,et al.  Nanoparticulates as Drug Carriers , 2006 .

[15]  M. Antonietti,et al.  Binding of calcium to phosphatidylcholine-phosphatidylserine membranes , 2006 .

[16]  D. Danino,et al.  Direct-Imaging and Freeze-Fracture Cryo-Transmission Electron Microscopy of Molecular Gels , 2006 .

[17]  O. Mondain-Monval Freeze fracture TEM investigations in liquid crystals , 2005 .

[18]  S. Balasubramanian,et al.  Fluorescence properties of Laurdan in cochleate phases. , 2003, Biochimica et biophysica acta.

[19]  L. Zarif,et al.  Efficacy of Orally Delivered Cochleates Containing Amphotericin B in a Murine Model of Aspergillosis , 2002, Antimicrobial Agents and Chemotherapy.

[20]  L. Zarif,et al.  Elongated supramolecular assemblies in drug delivery. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[21]  W Richter,et al.  Freeze-fracture studies on lipids and membranes. , 2001, Micron.

[22]  D. Danino Digital cryogenic transmission electron microscopy: an advanced tool for direct imaging of complex fluids , 2001 .

[23]  L. Zarif,et al.  Efficacy of Oral Cochleate-Amphotericin B in a Mouse Model of Systemic Candidiasis , 2000, Antimicrobial Agents and Chemotherapy.

[24]  R. Mannino,et al.  Cochleate Delivery Vehicles: Applications in Vaccine Delivery , 2000 .

[25]  David S. Perlin,et al.  Cochleates: New Lipid-Based Drug Delivery System , 2000 .

[26]  Cevc,et al.  Lipid vesicles and membrane fusion. , 1999, Advanced drug delivery reviews.

[27]  Wang,et al.  Targeting immune response induction with cochleate and liposome-based vaccines. , 1998, Advanced drug delivery reviews.

[28]  Y. Barenholz,et al.  Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. , 1998, Biochimica et biophysica acta.

[29]  D. Siegel,et al.  Diacylglycerol and hexadecane increase divalent cation-induced lipid mixing rates between phosphatidylserine large unilamellar vesicles. , 1994, Biophysical journal.

[30]  T. McIntosh,et al.  Hydration and steric pressures between phospholipid bilayers. , 1994, Annual review of biophysics and biomolecular structure.

[31]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[32]  V. Parsegian,et al.  Hydration forces between phospholipid bilayers , 1989 .

[33]  D. Papahadjopoulos,et al.  Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. , 1981, Biochemistry.

[34]  D. Papahadjopoulos,et al.  Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. , 1981, Biochimica et biophysica acta.

[35]  N. Gresh,et al.  Intermolecular chelation of two serine phosphates by Ca2+ and Mg2+. A theoretical structural investigation. , 1980, Biochimica et biophysica acta.

[36]  W. Pangborn,et al.  Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. , 1979, Biochemistry.

[37]  V. Parsegian,et al.  Measurement of repulsive forces between charged phospholipid bilayers. , 1978, Biochemistry.

[38]  W. Pangborn,et al.  CALCIUM‐INDUCED LIPID PHASE TRANSITIONS AND MEMBRANE FUSION * , 1978, Annals of the New York Academy of Sciences.

[39]  K. Jacobson,et al.  Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. , 1975, Biochimica et biophysica acta.

[40]  K. Jacobson,et al.  Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. , 1975, Biochemistry.

[41]  G. Poste,et al.  Membrane fusion and molecular segregation in phospholipid vesicles. , 1974, Biochimica et biophysica acta.

[42]  D. Papahadjopoulos,et al.  Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. , 1967, Biochimica et biophysica acta.