The Value Function of Singularly Perturbed Control Systems

[1]  V. Veliov A generalization of the Tikhonov theorem for singularly perturbed differential inclusions , 1997 .

[2]  Zvi Artstein,et al.  Linear-quadratic tracking of coupled slow and fast targets , 1997, Math. Control. Signals Syst..

[3]  Vladimir Gaitsgory,et al.  Limit Hamilton–Jacobi–Isaacs Equations for Singularly Perturbed Zero-Sum Differential Games , 1996 .

[4]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[5]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[6]  R. O'Malley Singular perturbations and optimal control , 1978 .

[7]  Zvi Artstein,et al.  Singularly perturbed ordinary differential equations with dynamic limits , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[9]  Z. Artstein,et al.  Tracking Fast Trajectories Along a Slow Dynamics: A Singular Perturbations Approach , 1997 .

[10]  Hassan K. Khalil,et al.  Singular perturbations in systems and control , 1986 .

[11]  Fabio Bagagiolo,et al.  Singular Perturbation of a Finite Horizon Problem with State-Space Constraints , 1998 .

[12]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[13]  P. Kokotovic,et al.  A two stage Lyapunov-Bellman feedback design of a class of nonlinear systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[14]  H. Soner Singular perturbations in manufacturing , 1993 .