A novel evolutionary technique to estimate induction machine parameters from name plate data

Owing to the fact that the performance and control design of large scale induction machines depend on accurate knowledge of its equivalent electrical circuit parameters, precise identification of these parameters is essential. Current methods used to quantify induction machine parameters call for performing several experimental testing such as no-load, locked-rotor and DC tests which may not be available due to the lack of hardware, experience and time required to perform the tests. In this paper, two different evolutionary computational techniques namely; bacterial foraging and genetic algorithm, are employed to estimate these parameters from machine nameplate data without conducting any experimental measurements. The accuracy of the proposed techniques is assessed through their application on squirrel cage and wound rotor induction motors of different ratings. The motors performance computed using the proposed techniques is compared with that computed using classical practical measurements. The obtained results reveal the ability of evolutionary techniques to estimate the equivalent electrical circuit parameters of induction machines with a reasonable degree of accuracy. Results also show that bacterial foraging approach is more accurate than genetic algorithm in estimating induction machine parameters.

[1]  Matthew W. Dunnigan,et al.  Parameter estimation of an induction machine using a dynamic particle swarm optimization algorithm , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[2]  A. Abu-Siada,et al.  Transformer Parameters Estimation From Nameplate Data Using Evolutionary Programming Techniques , 2014, IEEE Transactions on Power Delivery.

[3]  Mark W. Earley,et al.  National electrical code handbook , 2002 .

[4]  Chris Gerada,et al.  Identification of Induction Machine Electrical Parameters Using Genetic Algorithms Optimization , 2008, 2008 IEEE Industry Applications Society Annual Meeting.

[5]  Vitor Hugo Ferreira,et al.  The Induction Motor Parameter Estimation Using Genetic Algorithm , 2013, IEEE Latin America Transactions.

[6]  Luke Y. M. Yu Constant Starting Torque Control of Wound Rotor Induction Motors , 1970 .

[7]  Ajith Abraham,et al.  Analysis of the reproduction operator in an artificial bacterial foraging system , 2010, Appl. Math. Comput..

[8]  C. N. Bhende,et al.  Bacterial Foraging Technique-Based Optimized Active Power Filter for Load Compensation , 2007, IEEE Transactions on Power Delivery.

[9]  J. Pedra,et al.  Parameter estimation of squirrel-cage induction motors without torque measurements , 2006 .

[10]  Panthep Laohachai,et al.  Parameter Estimation of Three-Phase Induction Motor by Using Genetic Algorithm , 2009 .

[11]  C. Gerada,et al.  Induction Motor parameters identification using Genetic Algorithms for varying flux levels , 2008, 2008 13th International Power Electronics and Motion Control Conference.

[12]  C A Platero,et al.  Influence of Rotor Position in FRA Response for Detection of Insulation Failures in Salient-Pole Synchronous Machines , 2011, IEEE Transactions on Energy Conversion.

[13]  Ajith Abraham,et al.  Adaptive Computational Chemotaxis in Bacterial Foraging Optimization: An Analysis , 2009, IEEE Transactions on Evolutionary Computation.

[14]  Salaheddine Ethni,et al.  Induction Machine Winding Faults Identification using Bacterial Foraging Optimization Technique , 2014 .

[15]  D. Roger,et al.  A New Method for AC Machine Turn Insulation Diagnostic Based on High Frequency Resonances , 2007, IEEE Transactions on Dielectrics and Electrical Insulation.

[16]  Amin Mahdizadeh,et al.  Online estimation of induction motor parameters using a modified particle swarm optimization technique , 2013, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.

[17]  B. Abdelhadi,et al.  Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters , 2005, IEEE Transactions on Energy Conversion.

[18]  Marek Florkowski,et al.  Detection of winding faults in electrical machines using the frequency response analysis method , 2004 .

[19]  A. Feliachi,et al.  PSO-based Evolutionary Optimization for Parameter Identification of an Induction Motor , 2007, 2007 39th North American Power Symposium.

[20]  M. W. Dunnigan,et al.  Parameter estimation of an induction machine using a chaos particle swarm optimization algorithm , 2010 .

[21]  Mohamed G. Ashmawy,et al.  Short Term Load Forecasting Using Curve Fitting Prediction Optimized By Bacterial Foraging Optimization , 2013 .

[22]  Rong-Ching Wu,et al.  Parameter Identification of Induction Machine With a Starting No-Load Low-Voltage Test , 2012, IEEE Transactions on Industrial Electronics.

[23]  Rasmus K. Ursem,et al.  Parameter identification of induction motors using stochastic optimization algorithms , 2004, Appl. Soft Comput..

[24]  Jie Li,et al.  Parameter identification of induction motors using Ant Colony Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).