<jats:p>A leading proposal for verifying near-term quantum supremacy experiments on noisy random quantum circuits is linear cross-entropy benchmarking. For a quantum circuit <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> qubits and a sample <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi><mml:mo>∈</mml:mo><mml:mo fence="false" stretchy="false">{</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mo fence="false" stretchy="false">}</mml:mo><mml:mi>n</mml:mi></mml:msup></mml:math>, the benchmark involves computing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo fence="false" stretchy="false">⟨</mml:mo><mml:mi>z</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mi>C</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msup><mml:mn>0</mml:mn><mml:mi>n</mml:mi></mml:msup><mml:mo fence="false" stretchy="false">⟩</mml:mo><mml:msup><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>, i.e. the probability of measuring <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math> from the output distribution of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> on the all zeros input. Under a strong conjecture about the classical hardness of estimating output probabilities of quantum circuits, no polynomial-time classical algorithm given <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> can output a string <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math> such that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo fence="false" stretchy="false">⟨</mml:mo><mml:mi>z</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mi>C</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msup><mml:mn>0</mml:mn><mml:mi>n</mml:mi></mml:msup><mml:mo fence="false" stretchy="false">⟩</mml:mo><mml:msup><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math> is substantially larger than <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:msup><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msup></mml:mfrac></mml:math> (Aaronson and Gunn, 2019). On the other hand, for a random quantum circuit <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math>, sampling <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math> from the output distribution of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> achieves <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo fence="false" stretchy="false">⟨</mml:mo><mml:mi>z</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mi>C</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msup><mml:mn>0</mml:mn><mml:mi>n</mml:mi></mml:msup><mml:mo fence="false" stretchy="false">⟩</mml:mo><mml:msup><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mo>≈</mml:mo><mml:mfrac><mml:mn>2</mml:mn><mml:msup><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msup></mml:mfrac></mml:math> on average (Arute et al., 2019).In analogy with the Tsirelson inequality from quantum nonlocal correlations, we ask: can a polynomial-time quantum algorithm do substantially better than <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>2</mml:mn><mml:msup><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msup></mml:mfrac></mml:math>? We study this question in the query (or black box) model, where the quantum algorithm is given oracle access to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math>. We show that, for any <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ε</mml:mi><mml:mo>≥</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">p</mml:mi><mml:mi mathvariant="normal">o</mml:mi><mml:mi mathvariant="normal">l</mml:mi><mml:mi mathvariant="normal">y</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mfrac></mml:math>, outputting a sample <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math> such that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo fence="false" stretchy="false">⟨</mml:mo><mml:mi>z</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mi>C</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msup><mml:mn>0</mml:mn><mml:mi>n</mml:mi></mml:msup><mml:mo fence="false" stretchy="false">⟩</mml:mo><mml:msup><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mo>≥</mml:mo><mml:mfrac><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mi>ε</mml:mi></mml:mrow><mml:msup><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msup></mml:mfrac></mml:math> on average requires at least <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Ω</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mfrac><mml:msup><mml:mn>2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi>n</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="normal">p</mml:mi><mml:mi mathvariant="normal">o</mml:mi><mml:mi mathvariant="normal">l</mml:mi><mml:mi mathvariant="normal">y</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mfrac><mml:mo>)</mml:mo></mml:mrow></mml:math> queries to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math>, but not more than <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi>n</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math> queries to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math>, if <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> is either a Haar-random <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-qubit unitary, or a canonical state preparation oracle for a Haar-random <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-qubit state. We also show that when <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> samples from the Fourier distribution of a random Boolean function, the naive algorithm that samples from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> is the optimal 1-query algorithm for maximizing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo fence="false" stretchy="false">⟨</mml:mo><mml:mi>z</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mi>C</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:msup><mml:mn>0</mml:mn><mml:mi>n</mml:mi></mml:msup><mml:mo fence="false" stretchy="false">⟩</mml:mo><mml:msup><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math> on average.</jats:p>
[1]
Howard E. Brandt,et al.
Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C.
,
2002
.
[2]
Ronald de Wolf,et al.
Quantum lower bounds by polynomials
,
2001,
JACM.
[3]
Martin Raab,et al.
"Balls into Bins" - A Simple and Tight Analysis
,
1998,
RANDOM.
[4]
Ben Reichardt,et al.
Reflections for quantum query algorithms
,
2010,
SODA '11.
[5]
Noam Nisan,et al.
Quantum circuits with mixed states
,
1998,
STOC '98.
[6]
Frédéric Magniez,et al.
Search via quantum walk
,
2006,
STOC '07.
[7]
Gilles Brassard,et al.
Quantum cryptanalysis of hash and claw-free functions
,
1997,
SIGA.
[8]
SCOTT AARONSON,et al.
On the Classical Hardness of Spoofing Linear Cross-Entropy Benchmarking
,
2019,
ArXiv.
[9]
Andris Ambainis,et al.
Understanding Quantum Algorithms via Query Complexity
,
2017,
Proceedings of the International Congress of Mathematicians (ICM 2018).
[10]
F. Brandão,et al.
Local random quantum circuits are approximate polynomial-designs: numerical results
,
2012,
1208.0692.
[11]
Travis S. Humble,et al.
Quantum supremacy using a programmable superconducting processor
,
2019,
Nature.
[12]
Justin Thaler,et al.
Dual lower bounds for approximate degree and Markov-Bernstein inequalities
,
2013,
Inf. Comput..
[13]
Maris Ozols,et al.
Hamiltonian simulation with optimal sample complexity
,
2016,
npj Quantum Information.