Statistical inference for the generalized inverted exponential distribution based on upper record values

In this paper, non-Bayesian and Bayesian estimators for the unknown parameters are obtained based on records from the generalized inverted exponential distribution. Bayes' estimators of the unknown parameters are obtained under symmetric and asymmetric loss functions using gamma priors on both the shape and the scale parameters. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. We have also derived the Bayes interval of this distribution and discussed both frequentist and the Bayesian prediction intervals of the future record values based on the observed record values. Monte Carlo simulations are performed to compare the performances of the proposed methods, and a data set has been analyzed for illustrative purposes.

[1]  Narayanaswamy Balakrishnan,et al.  MAXIMUM LIKELIHOOD PREDICTION OF FUTURE RECORD STATISTIC , 2003 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  Jafar Ahmadi,et al.  Bayesian estimation and prediction for some life distributions based on record values , 2006 .

[4]  Sanku Dey,et al.  Generalized inverted exponential distribution under hybrid censoring , 2014 .

[5]  Ian R. Dunsmore,et al.  The future occurrence of records , 1983 .

[6]  R. Calabria,et al.  Point estimation under asymmetric loss functions for left-truncated exponential samples , 1996 .

[7]  Alexandre Berred,et al.  Prediction of record values , 1998 .

[8]  Z. F. Jaheen Empirical Bayes Inference for Generalized Exponential Distribution Based on Records , 2004 .

[9]  K. S. Sultan,et al.  Record values from generalized Pareto distribution and associated inference , 2000 .

[10]  Mohammad Z. Raqab,et al.  Inferences for generalized exponential distribution based on record statistics , 2002 .

[11]  Udo Kamps,et al.  A concept of generalized order statistics , 1995 .

[12]  Sajid Ali,et al.  On the Bayesian estimation of the weighted Lindley distribution , 2015 .

[13]  Sanku Dey,et al.  Generalized Inverted Exponential Distribution: Different Methods of Estimation , 2014 .

[14]  Hare Krishna,et al.  Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample , 2013 .

[15]  Abd EL-Baset A. Ahmad,et al.  Bayesian Estimation, Prediction and Characterization for the Gumbel Model Based on Records , 2002 .

[16]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  Sanku Dey,et al.  On progressively censored generalized inverted exponential distribution , 2014 .

[18]  B. Arnold,et al.  A first course in order statistics , 1994 .

[19]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[20]  H. Martz Bayesian reliability analysis , 1982 .

[21]  Narayanaswamy Balakrishnan,et al.  Relations, Bounds and Approximations for Order Statistics , 1989 .

[22]  Jafar Ahmadi,et al.  Comparing the fisher information in record values and iid observations , 2003 .

[23]  K. N. Chandler THE DISTRIBUTION AND FREQUENCY OF RECORD VALUES , 1952 .

[24]  A. M. Abouammoh,et al.  Reliability estimation of generalized inverted exponential distribution , 2009 .

[25]  M. Ahsanullah,et al.  Linear prediction of record values for the two parameter exponential distribution , 1980 .

[26]  Jafar Ahmadi,et al.  Statistical Analysis for Geometric Distribution Based on Records , 2006, Comput. Math. Appl..

[27]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[28]  Jafar Ahmadi,et al.  Fisher information in bivariate record values from a sample of fixed size , 2012 .