Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants.

[1]  H. Hahn,et al.  Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. , 1970, Journal of biomedical materials research.

[2]  R. Chahal,et al.  Preliminary observations of bone ingrowth into porous materials. , 1976, Journal of biomedical materials research.

[3]  R. Pilliar,et al.  A porous metal system for joint replacement surgery. , 1978, The International journal of artificial organs.

[4]  M. Spector,et al.  Porous titanium endosseous dental implants in Rhesus monkeys: microradiography and histological evaluation. , 1979, Journal of biomedical materials research.

[5]  R. Pilliar,et al.  The fatigue strength of porous-coated Ti-6%Al-4%V implant alloy. , 1984, Journal of biomedical materials research.

[6]  L. F. Nielsen Elasticity and Damping of Porous Materials and Impregnated Materials , 1984 .

[7]  H. Skinner,et al.  Fatigue properties of carbon- and porous-coated Ti-6Al-4V alloy. , 1984, Journal of biomedical materials research.

[8]  N Kuwayama,et al.  Mechanical properties and biomechanical compatibility of porous titanium for dental implants. , 1985, Journal of biomedical materials research.

[9]  S. Cook,et al.  Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants. , 1985, Clinical orthopaedics and related research.

[10]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[11]  R M Pilliar,et al.  Porous-surfaced metallic implants for orthopedic applications. , 1987, Journal of biomedical materials research.

[12]  Joon B. Park Biomaterials:An Introduction , 1992 .

[13]  W. Harris,et al.  Comparison of bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous coated cementless canine acetabular components. , 1993, Journal of biomedical materials research.

[14]  I. Noda,et al.  The development of new titanium arc-sprayed artificial joints , 1995 .

[15]  W. Head,et al.  Titanium as the material of choice for cementless femoral components in total hip arthroplasty. , 1995, Clinical orthopaedics and related research.

[16]  L. Dorr,et al.  Postmortem Analysis of Bone Growth into Porous-Coated Acetabular Components* , 1997, The Journal of bone and joint surgery. American volume.

[17]  R. Pilliar P/M processing of surgical sintered porous surfaces for tissue-to-implant fixation , 1998 .

[18]  G. K. Lewis,et al.  Practical considerations and capabilities for laser assisted direct metal deposition , 2000 .

[19]  Mamoru Mabuchi,et al.  Processing of biocompatible porous Ti and Mg , 2001 .

[20]  Mitsuo Niinomi,et al.  Recent metallic materials for biomedical applications , 2002 .

[21]  J. Mei,et al.  Near net shape manufacturing of components using direct laser fabrication technology , 2003 .

[22]  Naoyuki Nomura,et al.  Mechanical properties of porous titanium compacts prepared by powder sintering , 2003 .

[23]  Abdolreza Simchi,et al.  Effects of laser sintering processing parameters on the microstructure and densification of iron powder , 2003 .

[24]  K. Katti,et al.  Biomaterials in total joint replacement. , 2004, Colloids and surfaces. B, Biointerfaces.

[25]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[26]  Abhay Pandit,et al.  Fabrication methods of porous metals for use in orthopaedic applications. , 2006, Biomaterials.

[27]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[28]  B Vamsi Krishna,et al.  Low stiffness porous Ti structures for load-bearing implants. , 2007, Acta biomaterialia.

[29]  A. Bandyopadhyay,et al.  Surface modifications and cell-materials interactions with anodized Ti. , 2007, Acta biomaterialia.

[30]  Clemens A van Blitterswijk,et al.  Bone ingrowth in porous titanium implants produced by 3D fiber deposition. , 2007, Biomaterials.

[31]  B Vamsi Krishna,et al.  Processing and biocompatibility evaluation of laser processed porous titanium. , 2007, Acta biomaterialia.

[32]  大槻 文悟,et al.  Pore throat size and connectivity determine bone and tissue ingrowth into porous implants : three-dimensional micro-CT based structural analyses of porous bioactive titanium implants , 2007 .

[33]  Amit Bandyopadhyay,et al.  Engineered porous metals for implants , 2008 .

[34]  Amit Bandyopadhyay,et al.  Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. , 2008, Acta biomaterialia.

[35]  A Piattelli,et al.  Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. , 2008, Dental materials : official publication of the Academy of Dental Materials.

[36]  Vamsi Krishna Balla,et al.  Surface modification of laser-processed porous titanium for load-bearing implants , 2008 .

[37]  B Vamsi Krishna,et al.  Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[38]  Lewis Mullen,et al.  Selective Laser Melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[39]  N. Z. Zur Nieden,et al.  Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. , 2008, Tissue engineering. Part B, Reviews.