The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning.

[1]  P. Brookes,et al.  Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. , 2008, Antioxidants & redox signaling.

[2]  J. Downey,et al.  The pH Hypothesis of Postconditioning: Staccato Reperfusion Reintroduces Oxygen and Perpetuates Myocardial Acidosis , 2007, Circulation.

[3]  A. Kowaltowski,et al.  Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. , 2007, Free radical biology & medicine.

[4]  S. Nadtochiy,et al.  Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. , 2007, Journal of molecular and cellular cardiology.

[5]  I. West,et al.  Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. , 2006, American journal of physiology. Heart and circulatory physiology.

[6]  P. Pasdois,et al.  MitoKATP-dependent changes in mitochondrial volume and in complex II activity during ischemic and pharmacological preconditioning of langendorff-perfused rat heart , 2006, Journal of bioenergetics and biomembranes.

[7]  A. P. Sokolov,et al.  Nonezymatic formation of succinate in mitochondria under oxidative stress. , 2006, Free radical biology & medicine.

[8]  S. Nadtochiy,et al.  Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. , 2006, The Biochemical journal.

[9]  Ying Jin,et al.  Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. , 2006, American journal of physiology. Heart and circulatory physiology.

[10]  M. Moe,et al.  Volatile anaesthetics depolarize neural mitochondria by inhibiton of the electron transport chain , 2006, Acta anaesthesiologica Scandinavica.

[11]  S. Nadtochiy,et al.  Direct evidence for S-nitrosation of mitochondrial complex I. , 2006, The Biochemical journal.

[12]  A. Kowaltowski,et al.  Tissue protection mediated by mitochondrial K+ channels. , 2006, Biochimica et biophysica acta.

[13]  P. Brookes,et al.  Mitochondrial dysfunction in cardiac ischemia-reperfusion injury: ROS from complex I, without inhibition. , 2006, Biochimica et biophysica acta.

[14]  C. Hoppel,et al.  Blockade of Electron Transport before Cardiac Ischemia with the Reversible Inhibitor Amobarbital Protects Rat Heart Mitochondria , 2006, Journal of Pharmacology and Experimental Therapeutics.

[15]  Brian O'Rourke,et al.  The mitochondrial origin of postischemic arrhythmias. , 2005, The Journal of clinical investigation.

[16]  J. Daut,et al.  K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms. , 2005, Journal of molecular and cellular cardiology.

[17]  B. Vanwinkle,et al.  Diazoxide-mediated Preconditioning against Apoptosis Involves Activation of cAMP-response Element-binding Protein (CREB) and NFκB* , 2004, Journal of Biological Chemistry.

[18]  P. Brookes,et al.  Calcium, ATP, and ROS: a mitochondrial love-hate triangle. , 2004, American journal of physiology. Cell physiology.

[19]  E. Marbán,et al.  Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Szewczyk,et al.  Quinine Inhibits Mitochondrial ATP-regulated Potassium Channel from Bovine Heart , 2004, The Journal of Membrane Biology.

[21]  D. Warltier,et al.  Cardiac pharmacological preconditioning with volatile anesthetics: from bench to bedside? , 2004, American journal of physiology. Heart and circulatory physiology.

[22]  A. Ramachandran,et al.  Mechanisms of the interaction of nitroxyl with mitochondria. , 2004, The Biochemical journal.

[23]  Keith D Garlid,et al.  Mitochondrial potassium transport: the K(+) cycle. , 2003, Biochimica et biophysica acta.

[24]  A. Kowaltowski,et al.  Ischemic preconditioning inhibits mitochondrial respiration, increases H2O2 release, and enhances K+ transport. , 2003, American journal of physiology. Heart and circulatory physiology.

[25]  A. Terzic,et al.  Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. , 2003, American journal of physiology. Heart and circulatory physiology.

[26]  A. Halestrap,et al.  Matrix volume measurements challenge the existence of diazoxide/glibencamide‐sensitive KATP channels in rat mitochondria , 2003, The Journal of physiology.

[27]  Ulrich Brandt,et al.  Halothane, isoflurane and sevoflurane inhibit NADH: ubiquinone oxidoreductase (complex I) of cardiac mitochondria , 2002, The Journal of physiology.

[28]  L. Szweda,et al.  Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion. , 2002, Archives of biochemistry and biophysics.

[29]  P. Brookes,et al.  Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. , 2002, Free radical biology & medicine.

[30]  A. Terzic,et al.  Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. , 2002, American journal of physiology. Heart and circulatory physiology.

[31]  J. Downey,et al.  Menadione mimics the infarct-limiting effect of preconditioning in isolated rat hearts. , 2001, American journal of physiology. Heart and circulatory physiology.

[32]  C. Hoppel,et al.  Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. , 2001, Journal of molecular and cellular cardiology.

[33]  P. Bhargava,et al.  Chemical preconditioning with 3-nitropropionic acid in hearts: role of mitochondrial K(ATP) channel. , 2001, American journal of physiology. Heart and circulatory physiology.

[34]  A. Kowaltowski,et al.  Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. , 2001, American journal of physiology. Heart and circulatory physiology.

[35]  T. Vanden Hoek,et al.  Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. , 2000, Circulation research.

[36]  E. Marbán,et al.  Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. , 2000, Circulation.

[37]  P. Bernardi,et al.  Mitochondrial transport of cations: channels, exchangers, and permeability transition. , 1999, Physiological reviews.

[38]  G. Cote,et al.  A human succinate-ubiquinone oxidoreductase CII-3 subunit gene ending in a polymorphic dinucleotide repeat is located within the sulfonylurea receptor (SUR) gene. , 1998, Molecular genetics and metabolism.

[39]  T. Vanden Hoek,et al.  Reactive Oxygen Species Released from Mitochondria during Brief Hypoxia Induce Preconditioning in Cardiomyocytes* , 1998, The Journal of Biological Chemistry.

[40]  Yongge Liu,et al.  Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? , 1998, Circulation.

[41]  V. Yarov-Yarovoy,et al.  State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. , 1998, The Journal of biological chemistry.

[42]  G. Paradies,et al.  Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations , 1998, FEBS letters.

[43]  M. Smith,et al.  Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. , 1997, Circulation research.

[44]  G. Gross,et al.  The ischemia-selective KATP channel antagonist, 5-hydroxydecanoate, blocks ischemic preconditioning in the rat heart. , 1997, Journal of molecular and cellular cardiology.

[45]  H. Nakase,et al.  Increased Hypoxic Tolerance by Chemical Inhibition of Oxidative Phosphorylation: “Chemical Preconditioning” , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[46]  B. Liang Direct preconditioning of cardiac ventricular myocytes via adenosine A1 receptor and KATP channel. , 1996, The American journal of physiology.

[47]  C. Thiemermann,et al.  Limitation of myocardial infarct size in the rabbit by ischaemic preconditioning is abolished by sodium 5-hydroxydecanoate. , 1996, Cardiovascular research.

[48]  G. Gross,et al.  Bimakalim, an ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning to reduce infarct size, adenosine release, and neutrophil function in dogs. , 1995, Circulation.

[49]  J. Downey,et al.  Potassium channels and preconditioning of isolated rabbit cardiomyocytes: effects of glyburide and pinacidil. , 1995, Journal of molecular and cellular cardiology.

[50]  A. Halestrap,et al.  Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. , 1995, The Biochemical journal.

[51]  A. Szewczyk,et al.  Potassium channel openers induce mitochondrial matrix volume changes via activation of ATP-sensitive K+ channel. , 1993, Polish journal of pharmacology.

[52]  G. Mironova,et al.  Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. , 1992, The Journal of biological chemistry.

[53]  G. Grover,et al.  Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. , 1992, Cardiovascular research.

[54]  G. Gross,et al.  Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. , 1992, Circulation research.

[55]  T. Higuti,et al.  ATP-sensitive K+ channel in the mitochondrial inner membrane , 1991, Nature.

[56]  V. Darley-Usmar,et al.  Reoxygenation-dependent decrease in mitochondrial NADH:CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart. , 1991, The Biochemical journal.

[57]  V. Darley-Usmar,et al.  Hypoxia-reoxygenation induced increase in cellular Ca2+ in myocytes and perfused hearts: the role of mitochondria. , 1989, Journal of molecular and cellular cardiology.

[58]  A. Halestrap The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. , 1989, Biochimica et biophysica acta.

[59]  R. Jennings,et al.  Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. , 1986, Circulation.

[60]  A. Beavis,et al.  Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane. , 1985, The Journal of biological chemistry.

[61]  A. Beavis,et al.  Swelling and contraction of the mitochondrial matrix. I. A structural interpretation of the relationship between light scattering and matrix volume. , 1985, The Journal of biological chemistry.

[62]  M. Gutman Modulation of mitochondrial succinate dehydrogenase activity, mechanism and function , 1978, Molecular and Cellular Biochemistry.

[63]  M. Mayr,et al.  Tightly bound oxalacetate and the activation of succinate dehydrogenase. , 1972, Biochemical and biophysical research communications.

[64]  M. Gutman,et al.  Control of succinate dehydrogenase in mitochondria. , 1971, Biochemistry.

[65]  R. Porten,et al.  Diazoxide, an inhibitor of succinate oxidation , 1969 .

[66]  R. Portenhauser,et al.  Diazoxide, an inhibitor of succinate oxidation. , 1969, Biochemical pharmacology.

[67]  C. Veeger,et al.  STUDIES ON SUCCINATE DEHYDROGENASE. I. SPECTRAL PROPERTIES OF THE PURIFIED ENZYME AND FORMATION OF ENZYME-COMPETITIVE INHIBITOR COMPLEXES. , 1964, Biochimica et biophysica acta.

[68]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[69]  I. West,et al.  The direct physiological effects of mitoK(ATP) opening on heart mitochondria. , 2006, American journal of physiology. Heart and circulatory physiology.

[70]  P. Moore,et al.  Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. , 2006, Journal of molecular and cellular cardiology.

[71]  D. Wink,et al.  Nitroxyl (HNO): chemistry, biochemistry, and pharmacology. , 2005, Annual review of pharmacology and toxicology.

[72]  D. Kass,et al.  Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. , 2003, Free radical biology & medicine.

[73]  W. Lederer,et al.  ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. , 1991, Circulation research.

[74]  A. Shug,et al.  Modulation of adenine nucleotide translocase activity during myocardial ischemia. , 1987, Zeitschrift fur Kardiologie.