Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy

Molecular mechanics/dynamics computer simulations are used to explore the atomic scale structure and to predict binding energy values for polymer/clay nanocomposites based on nylon-6, montmorillonite (MMT) and several, different quaternary ammonium salts. Our results reveal that the energy of binding between the polymeric matrix and the montmorillonite platelet shows a decreasing trend with increasing molecular volume V of the quaternary ammonium salt used as surfactant. On the other hand, both the binding energy between the polyamide and the quat, and between the quat and the montmorillonite increase with increasing V, although with a different slope. Shorter hydrocarbonic chains are more effective in producing favorable binding energies with respect to longer ones, and the substitution of hydrogen atoms with polar groups, such as –OH or –COOH on the quaternary ammonium salt generally results in a greater interaction of the quat with the polymer. Finally, under the hypothesis that the clay platelets are uniformly dispersed within the polymer matrix, the pristine clay still yields a high interfacial strength between MMT and nylon-6. © 2003 Elsevier B.V. All rights reserved.

[1]  E. Guth Theory of Filler Reinforcement , 1945 .

[2]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[3]  Emmanuel P. Giannelis,et al.  Polymer Layered Silicate Nanocomposites , 1996 .

[4]  T. Pinnavaia,et al.  Epoxy self-polymerization in smectite clays , 1996 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[7]  Maurizio Fermeglia,et al.  Equation‐of‐state parameters for pure polymers by molecular dynamics simulations , 1999 .

[8]  B. Theng The Chemistry of Clay-Organic Reactions , 2024 .

[9]  Lee Wook Jang,et al.  Characterization of epoxy–clay hybrid composite prepared by emulsion polymerization , 1998 .

[10]  Thomas J. Pinnavaia,et al.  Nanolayer Reinforcement of Elastomeric Polyurethane , 1998 .

[11]  E. Giannelis,et al.  Direct Synthesis of Dispersed Nanocomposites by in Situ Living Free Radical Polymerization Using a Silicate-Anchored Initiator , 1999 .

[12]  Aijuan Gu,et al.  A novel preparation of polyimide/clay hybrid films with low coefficient of thermal expansion , 2001 .

[13]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[14]  V. Drits,et al.  The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction , 1984, Clay Minerals.

[15]  T. Kurauchi,et al.  Sorption of water in nylon 6‐clay hybrid , 1993 .

[16]  P. Flory Principles of polymer chemistry , 1953 .

[17]  T. Pinnavaia,et al.  Dielectric properties of smectite clays , 1996 .

[18]  S. Bunte,et al.  Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field , 2000 .

[19]  R. Vaia,et al.  Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment , 1997 .

[20]  W. Becktel,et al.  Comparison of van der Waals and semiempirical calculations of the molecular volumes of small molecules and proteins. , 1997, Biopolymers.

[21]  Toshio Kurauchi,et al.  Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam , 1993 .

[22]  L. Goettler,et al.  Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling ☆ , 2002 .

[23]  Zhu Xiaoguang,et al.  Studies on nylon 6/clay nanocomposites by melt-intercalation process , 1999 .

[24]  R. Vaia,et al.  Lattice model of polymer melt intercalation in organically-modified layered silicates , 1997 .

[25]  Lang Xu,et al.  In Situ Synthesis of Polymer−Clay Nanocomposites from Silicate Gels , 1998 .

[26]  R. Vaia,et al.  Polymer/layered silicate nanocomposites as high performance ablative materials , 1999 .

[27]  Thomas J. Pinnavaia,et al.  Hybrid Organic−Inorganic Nanocomposites: Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer , 1998 .

[28]  Andrew G. Glen,et al.  APPL , 2001 .

[29]  H. Lindberg,et al.  Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure , 2001 .

[30]  Ulrich W. Suter,et al.  Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems , 1994 .

[31]  H. Olphen An Introduction to Clay Colloid Chemistry , 1977 .

[32]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[33]  Jeffrey W. Gilman,et al.  Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites , 1999 .

[34]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[35]  D.-K. Yang,et al.  Dynamical heterogeneity in nanoconfined poly(styrene) chains , 2000 .

[36]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[37]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[38]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[39]  Chen Long,et al.  Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites , 1999 .

[40]  Toshio Kurauchi,et al.  Synthesis of nylon 6-clay hybrid , 1993 .

[41]  P. Messersmith,et al.  Synthesis and barrier properties of poly(ε‐caprolactone)‐layered silicate nanocomposites , 1995 .

[42]  Toshio Kurauchi,et al.  Interaction of nylon 6‐clay surface and mechanical properties of nylon 6‐clay hybrid , 1995 .

[43]  Jie Yin,et al.  Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation: morphology, solvent resistance properties and thermal properties , 2001 .

[44]  T. Pinnavaia,et al.  Clay-Reinforced Epoxy Nanocomposites , 1994 .

[45]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[46]  Maurizio Fermeglia,et al.  A novel approach to thermophysical properties prediction for chloro-fluoro-hydrocarbons , 1999 .

[47]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[48]  P. D. Fleming,et al.  Structure and energy of thin films of poly-(1,4-cis-butadiene): A new atomistic approach , 1995 .

[49]  Thomas J. Pinnavaia,et al.  Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin , 1994 .

[50]  J. Andraos,et al.  Model studies on the photochemistry of phenolic sulfonate photoacid generators , 1998 .

[51]  Lee Wook Jang,et al.  Preparation and Characterization of PMMA-Clay Hybrid Composite by Emulsion Polymerization , 1996 .