AN INTRODUCTION TO SCHOENBERG'S APPROXIMATION

[1]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[2]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae , 1946 .

[3]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[4]  L. Schwartz Théorie des distributions , 1966 .

[5]  I. J. Schoenberg,et al.  Cardinal interpolation and spline functions , 1969 .

[6]  P. Laurent Approximation et optimisation , 1972 .

[7]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[8]  C. K. Yuen,et al.  Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  D. Levin,et al.  Iterative Solution of Systems Originating from Integral Equations and Surface Interpolation , 1983 .

[10]  C. Micchelli,et al.  On the approximation order from certain multivariate spline spaces , 1984, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[11]  Rong-Qing Jia,et al.  Controlled approximation and a characterization of the local approximation order , 1985 .

[12]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[13]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[14]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[15]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[16]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[17]  Albert Cohen Ondelettes, analyses multi résolutions et traitement numérique du signal , 1990 .

[18]  W. Madych,et al.  Polyharmonic cardinal splines: a minimization property , 1990 .

[19]  C. Rabut B-splines polyharmoniques cardinales : interpolation, quasi-interpolation, filtrage , 1990 .

[20]  C. D. Boor,et al.  Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .

[21]  Christophe Rabut,et al.  How to Build Quasi-Interpolants: Application to Polyharmonic B-Splines , 1991, Curves and Surfaces.

[22]  A. Ron A characterization of the approximation order for multivariate spline spaces , 1991 .

[23]  M. J. D. Powell Univariate Multiquadric Interpolation: Some Recent Results , 1991, Curves and Surfaces.

[24]  M. Buhmann On quasi-interpolation with radial basis functions , 1993 .