Remote sensing of seasonal variability of fractional vegetation cover and its object-based spatial pattern analysis over mountain areas

[1]  Heather Reese,et al.  C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical c-parameter , 2011 .

[2]  Qiang Liu,et al.  Inversion of a Radiative Transfer Model for Estimating Forest LAI From Multisource and Multiangular Optical Remote Sensing Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  María-Pilar Jarabo-Amores,et al.  Spatial-Range Mean-Shift Filtering and Segmentation Applied to SAR Images , 2011, IEEE Transactions on Instrumentation and Measurement.

[4]  Wenjiang Huang,et al.  Inversion of a radiative transfer model for estimating forest lai from multisource and multi-angular optical remote sensing data based on ANN , 2010, 2010 Second IITA International Conference on Geoscience and Remote Sensing.

[5]  Tobias Langanke,et al.  Combined object-based classification and manual interpretation–synergies for a quantitative assessment of parcels and biotopes , 2009 .

[6]  Congshan Zhu,et al.  Mean shift‐based clustering analysis of multispectral remote sensing imagery , 2009 .

[7]  Liangpei Zhang,et al.  An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[8]  P. Gong,et al.  Reduction of atmospheric and topographic effect on Landsat TM data for forest classification , 2008 .

[9]  Robert Jenssen,et al.  Mean shift spectral clustering , 2008, Pattern Recognit..

[10]  Sylvie Le Hégarat-Mascle,et al.  Determination of vegetation cover fraction by inversion of a four-parameter model based on isoline parametrization , 2007 .

[11]  J. Mustard,et al.  Cross-scalar satellite phenology from ground, Landsat, and MODIS data , 2007 .

[12]  P. Gong,et al.  Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval , 2006 .

[13]  Liangpei Zhang,et al.  A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[14]  G. Hay,et al.  An automated object-based approach for the multiscale image segmentation of forest scenes , 2005 .

[15]  Craig A. Coburn,et al.  SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Manfred Ehlers,et al.  A novel method for generating 3D city models from high resolution and multi‐sensor remote sensing data , 2005 .

[17]  Tazio Strozzi,et al.  Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry , 2004 .

[18]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[19]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[20]  B. Markham,et al.  Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges , 2003, IEEE Trans. Geosci. Remote. Sens..

[21]  C. Burnett,et al.  A multi-scale segmentation/object relationship modelling methodology for landscape analysis , 2003 .

[22]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[23]  Thomas Blaschke,et al.  A comparison of three image-object methods for the multiscale analysis of landscape structure , 2003 .

[24]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[25]  Ruiliang Pu,et al.  Simple calibration of AVIRIS data and LAI mapping of forest plantation in southern Argentina , 2003 .

[26]  J. Dymond,et al.  Correcting satellite imagery for the variance of reflectance and illumination with topography , 2003 .

[27]  A. Kääb Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data , 2002 .

[28]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[29]  G. Perry,et al.  Spatial modelling of landscape composition and pattern in a maquis–forest complex, Mont Do, New Caledonia , 2002 .

[30]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[32]  X Briottet,et al.  Radiative transfer solution for rugged and heterogeneous scene observations. , 2000, Applied optics.

[33]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[34]  A. Gillespie,et al.  Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry , 1998 .

[35]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[36]  Geoffrey J. Hay,et al.  Spatial thresholds, image-objects, and upscaling: A multiscale evaluation , 1997 .

[37]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[38]  Klaus I. Itten,et al.  A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain , 1997, IEEE Trans. Geosci. Remote. Sens..

[39]  R. Richter Correction of atmospheric and topographic effects for high spatial resolution satellite imagery , 1997 .

[40]  K. Wittich,et al.  Area-averaged vegetative cover fraction estimated from satellite data , 1995 .

[41]  J. Clevers,et al.  The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches , 1995 .

[42]  Alan H. Strahler,et al.  Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model , 1994, IEEE Trans. Geosci. Remote. Sens..

[43]  J. Boone Kauffman,et al.  Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado , 1994 .

[44]  G. Grabherr,et al.  Climate effects on mountain plants , 1994, Nature.

[45]  I. Hanski,et al.  Patch-occupancy dynamics in fragmented landscapes. , 1994, Trends in ecology & evolution.

[46]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[47]  P. Ehrlich,et al.  Forest Canopy Structure at Overwintering Monarch Butterfly Sites: Measurements with Hemispherical Photography , 1991 .

[48]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[49]  C. Justice,et al.  Analysis of the phenology of global vegetation using meteorological satellite data , 1985 .

[50]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[51]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[52]  W. Hargrove,et al.  Toward a national early warning system for forest disturbances using remotely sensed canopy phenology , 2009 .

[53]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[54]  Thomas Blaschke,et al.  Object-oriented image analysis and scale-space: Theory and methods for modeling and evaluating multi-scale landscape structure , 2001 .

[55]  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Band-Subset-Based Clustering and Fusion for Hyperspectral , 2022 .