Effects of Particle Size, Electronic Connectivity, and Incoherent Nanoscale Domains on the Sequence of Lithiation in LiFePO4 Porous Electrodes

High-resolution X-ray microscopy is used to investigate the sequence of lithiation in LiFePO4 porous electrodes. For electrodes with homogeneous interparticle electronic connectivity via the carbon black network, the smaller particles lithiate first. For electrodes with heterogeneous connectivity, the better-connected particles preferentially lithiate. Correlative electron and X-ray microscopy also reveal the presence of incoherent nanodomains that lithiate as if they are separate particles.

[1]  J. Dionne,et al.  In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. , 2014, Nature materials.

[2]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[3]  S. Marchesini,et al.  Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in LixFePO₄. , 2015, Nano letters.

[4]  Jason Graetz,et al.  Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: A Study by In‐Situ Synchrotron X‐Ray Diffraction and Electron Energy‐Loss Spectroscopy , 2013 .

[5]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[6]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[7]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[8]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[9]  E. F. Rauch,et al.  Confirmation of the domino-cascade model by lifepo4/fepo 4 precession electron diffraction , 2011 .

[10]  G. Ceder,et al.  Particle-size and morphology dependence of the preferred interface orientation in LiFePO4 nano-particles , 2014 .

[11]  A. Boulineau,et al.  Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction. , 2013, ACS nano.

[12]  Daniel A. Cogswell,et al.  Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO4 Particles Revealed through Nanoscale Operando State‐of‐Charge Imaging , 2015 .

[13]  D. Guyomard,et al.  Electronic and Ionic Wirings Versus the Insertion Reaction Contributions to the Polarization in LiFePO4 Composite Electrodes , 2010 .

[14]  Peng Bai,et al.  Charge transfer kinetics at the solid–solid interface in porous electrodes , 2014, Nature Communications.

[15]  Venkat Srinivasan,et al.  Existence of path-dependence in the LiFePO4 electrode , 2006 .

[16]  S. Marchesini,et al.  Chemical composition mapping with nanometre resolution by soft X-ray microscopy , 2014, Nature Photonics.

[17]  Kyle R Fenton,et al.  Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. , 2013, Nano letters.

[18]  Marnix Wagemaker,et al.  Effect of Surface Energies and Nanoparticle Size Distribution on Open Circuit Voltage of Li-Electrodes , 2009 .

[19]  Guoying Chen,et al.  Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation. , 2013, Chemistry of materials : a publication of the American Chemical Society.

[20]  M. Gaberšček,et al.  Electrochemical kinetics of porous, carbon-decorated LiFePO4 cathodes: separation of wiring effects from solid state diffusion. , 2007, Physical chemistry chemical physics : PCCP.

[21]  Stefan Pischinger,et al.  Percolation–tunneling modeling for the study of the electric conductivity in LiFePO4 based Li-ion battery cathodes , 2011 .

[22]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[23]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[24]  Fiona C. Strobridge,et al.  Mapping the Inhomogeneous Electrochemical Reaction Through Porous LiFePO4-Electrodes in a Standard Coin Cell Battery , 2015 .

[25]  Yiyang Li,et al.  Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. , 2014, Nature materials.

[26]  H. Ahn,et al.  Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance , 2010, Advanced materials.

[27]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[28]  Min Zhou,et al.  Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries , 2010 .

[29]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[30]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[31]  Biao Zhang,et al.  Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries. , 2013, Nanoscale.

[32]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[33]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[34]  Martin Z. Bazant,et al.  Phase Transformation Dynamics in Porous Battery Electrodes , 2014, 1401.7072.

[35]  T. Tyliszczak,et al.  High-resolution chemical analysis on cycled LiFePO4 battery electrodes using energy-filtered transmission electron microscopy , 2014 .

[36]  J. Goodenough,et al.  Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. , 2011, Journal of the American Chemical Society.

[37]  G. Ceder,et al.  Architecture Dependence on the Dynamics of Nano-LiFePO4 Electrodes , 2014 .

[38]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[39]  Thomas J. Richardson,et al.  Visualization of Charge Distribution in a Lithium Battery Electrode , 2010 .

[40]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[41]  W. Craig Carter,et al.  Electrochemically Induced Phase Transformation in Nanoscale Olivines Li1−xMPO4 (M = Fe, Mn) , 2008 .

[42]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[43]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[44]  W. Craig Carter,et al.  Design criteria for electrochemical shock resistant battery electrodes , 2012 .

[45]  P. Novák,et al.  Influence of Conversion Material Morphology on Electrochemistry Studied with Operando X‐Ray Tomography and Diffraction , 2015, Advanced materials.

[46]  Yong‐Sheng Hu,et al.  Phase transformation and lithiation effect on electronic structure of Li(x)FePO4: an in-depth study by soft X-ray and simulations. , 2012, Journal of the American Chemical Society.

[47]  Robert Dominko,et al.  Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes , 2007 .

[48]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[49]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[50]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[51]  D. F. Ogletree,et al.  Soft X-ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source , 2006 .

[52]  Marnix Wagemaker,et al.  Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.