Etude experimentale du rachis cervical : comportement mecanique in vitro et cinematique in vivo

L'etude experimentale du rachis cervical est essentielle pour la comprehension de son fonctionnement normal et pour discerner les roles fonctionnels des divers elements. En outre, la mise en place de systeme d'evaluation du rachis lese et instrumente est primordiale pour s'assurer d'une bonne stabilisation des pathologies par les differentes osteosyntheses. Cette etude a donc pour objectif d'augmenter la base de donnees concernant le comportement du rachis cervical. Pour cela, nous avons realise des essais in vitro sur segments cadaveriques de l'occiput a t1. Les mobilites intervertebrales sous chargement physiologique ont ete analysees pour chaque unite fonctionnelle. Les sollicitations sont des couples de purs de flexion/extension, inflexion laterale et torsion axiale. Plusieurs dispositifs d'osteosyntheses ont aussi ete etudies dans cette etude en comparant le comportement de segments sains puis leses et instrumentes. L'objectif de ces essais consiste a s'assurer d'une bonne stabilisation post-operatoire de la colonne. Parallelement, la cinematique du rachis cervical de 120 personnes saines a ete analysee. Pour cela, chaque sujet a realise des cycles de deplacement en flexion/extension, inclinaison et rotation axiale. L'analyse des deplacements tridimensionnels a ete faite a l'aide d'un dispositif optique de reconstruction tridimensionnelle compose de cameras. In vitro, les courbes de comportement des unites fonctionnelles sont fortement non lineaires. Aux alentours du point d'equilibre, nous avons une zone de tres faible rigidite (zone neutre), suivi d'une zone rigide, quasi asymptotique en fin de chargement. C'est sous torsion axiale que les mobilites sont les plus importantes, suivi par la flexion/extension et par l'inflexion laterale. Sous torsion axiale, plus de 50% de la mobilite totale du cou est obtenue au niveau c1/c2. In vivo, nous observons d'autre part une decroissance de la mobilite avec l'age, particulierement importante pour les hommes.

[1]  Laurence Chèze,et al.  Contribution à l'étude cinématique et dynamique in vivo de structures osseuses humaines par l'exploitation de données externes , 1993 .

[2]  Jae Yong Ahn,et al.  Effects of Rigidity of an Internal Fixation Device A Comprehensive Biomechanical Investigation , 1991, Spine.

[3]  J. Myklebust,et al.  Biomechanics of Cervical Spine Facetectomy and Fixation Techniques , 1988, Spine.

[4]  R. N. Kruse,et al.  Anterior Screw Fixation of Type II Odontoid Fractures: A Biomechanical Study , 1995, Spine.

[5]  Narayan Yoganandan,et al.  Kinematic and Anatomical Analysis of the Human Cervical Spinal Column Under Axial Loading , 1989 .

[6]  M. Panjabi,et al.  Three-Dimensional Movements of the Upper Cervical Spine , 1988, Spine.

[7]  W C Hayes,et al.  Variations of stiffness and strength along the human cervical spine. , 1991, Journal of biomechanics.

[8]  L Penning,et al.  Rotation of the Cervical Spine: A CT Study in Normal Subjects , 1987, Spine.

[9]  J Dvorak,et al.  Age and Gender Related Normal Motion of the Cervical Spine , 1992, Spine.

[10]  J Dvorak,et al.  Effects of Alar ligament transection on upper cervical spine rotation , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[11]  D. Kunz,et al.  Anterior Cervical Discectomy and Fusion: A Comparison of Techniques in an Animal Model , 1992, Spine.

[12]  D. D. Anderson,et al.  Biomechanical Evaluation of Cervical Spine Stabilization Methods Using a Porcine Model , 1995, Spine.

[13]  M M Panjabi,et al.  Three-dimensional translational movements of the upper cervical spine. , 1991, Journal of spinal disorders.

[14]  J Dvorak,et al.  Flexion, extension, and lateral bending of the upper cervical spine in response to alar ligament transections. , 1991, Journal of spinal disorders.

[15]  N. Crawford,et al.  Morphology and Kinematics of the Baboon Upper Cervical Spine: A Model of the Atlantoaxial Complex , 1994, Spine.

[16]  M M Panjabi,et al.  Functional Anatomy of the Alar Ligaments , 1987, Spine.

[17]  I. Stokes Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. , 1994, Spine.

[18]  B S Myers,et al.  The viscoelastic responses of the human cervical spine in torsion: experimental limitations of quasi-linear theory, and a method for reducing these effects. , 1991, Journal of biomechanics.

[19]  T. R. Garrett,et al.  Normal range of motion of the cervical spine: an initial goniometric study. , 1992, Physical therapy.

[20]  G. Graziano,et al.  A comparative study of fixation techniques for type II fractures of the odontoid process. , 1993, Spine.

[21]  M. Panjabi,et al.  Posture affects motion coupling patterns of the upper cervical spine , 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[22]  N. Milne The role of zygapophysial joint orientation and uncinate processes in controlling motion in the cervical spine. , 1991, Journal of anatomy.

[23]  D. Grob,et al.  Clinical Validation of Functional Flexion/Extension Radiographs of the Cervical Spine , 1993, Spine.

[24]  V. Goel,et al.  Kinematics of the Cervical Spine Following Discectomy and Stabilization , 1989, Spine.

[25]  R Zehnder,et al.  CT - Functional Diagnostics of the Rotatory Instability of the Upper Cervical Spine: Part 2. An Evaluation on Healthy Adults and Patients with Suspected Instability , 1987, Spine.

[26]  V K Goel,et al.  Ligamentous Laxity Across C0‐C1-C2 Complex: Axial Torque‐Rotation Characteristics Until Failure , 1990, Spine.

[27]  S. Woo,et al.  Effects of postmortem storage by freezing on ligament tensile behavior. , 1986, Journal of biomechanics.

[28]  G. Dang,et al.  Changes in Cervical Canal Spinal Volume During In Vitro Flexion‐Extension , 1996, Spine.

[29]  L. Penning Normal movements of the cervical spine. , 1978, AJR. American journal of roentgenology.

[30]  J. Galante Tensile properties of the human lumbar annulus fibrosus. , 1967, Acta orthopaedica Scandinavica.

[31]  V. Goel,et al.  An in-vitro study of the kinematics of the normal, injured and stabilized cervical spine. , 1984, Journal of biomechanics.

[32]  D R Benson,et al.  Biomechanics of Cervical Spine Internal Fixation , 1991, Spine.

[33]  S. Larsson,et al.  Three-Dimensional Analysis of Neck Motion: A Clinical Method , 1990, Spine.

[34]  M M Panjabi,et al.  Stability of the cervical spine under tension. , 1978, Journal of biomechanics.

[35]  L. Claes,et al.  Comparative study of the stability of anterior and posterior cervical spine fixation procedures , 2004, Archives of orthopaedic and traumatic surgery.

[36]  J. Dvorak,et al.  In vivo flexion/extension of the normal cervical spine , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[37]  L. Lenke,et al.  Prospective Analysis of Nutritional Status Normalization After Spinal Reconstructive Surgery , 1995, Spine.

[38]  Manohar M. Panjabi,et al.  Clinical Biomechanics of the Spine , 1978 .

[39]  W Rauschning,et al.  Anatomic and Biomechanical Assessment of Transarticular Screw Fixation for Atlantoaxial Instability , 1991, Spine.

[40]  M. Panjabi,et al.  An anatomic basis for spinal instability: A porcine trauma model , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[41]  M. Panjabi,et al.  Effects of freezing and freeze‐drying on the biomechanical properties of rat bone , 1984, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[42]  J Dubousset,et al.  A Biomechanical Analysis of Short Segment Spinal Fixation Using a Three-Dimensional Geometric and Mechanical Model , 1993, Spine.

[43]  H. Moriya,et al.  Anterior Surgery in Four Consecutive Technical Phases for Cervical Spondylotic Myelopathy , 1993, Spine.

[44]  L G Gilbertson,et al.  Dynamic response of the occipito–atlanto–axial (C0‐C1‐C2) complex in right axial rotation , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[45]  T J Smith,et al.  In Vitro Spinal Biomechanics: Experimental Methods and Apparatus , 1991, Spine.

[46]  M. Pearcy,et al.  Three-dimensional analysis of active cervical motion: the effect of age and gender. , 1996, Clinical biomechanics.

[47]  J N Weinstein,et al.  A Technique to Evaluate an Internal Spinal Device by Use of the Selspot System: An Application to Luque Closed Loop , 1987, Spine.

[48]  H. M. Karara,et al.  Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry , 2015 .

[49]  H N Herkowitz,et al.  A Biomechanical Comparison of Cervical Laminaplasty and Cervical Laminectomy with Progressive Facetectomy , 1993, Spine.

[50]  Bone graft translation of four upper cervical spine fixation techniques in a cadaveric model , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[51]  A. Schultz,et al.  Load-displacement properties of lower cervical spine motion segments. , 1988, Journal of biomechanics.

[52]  F Lavaste,et al.  Quantification of Three-Dimensional Vertebral Rotations in Scoliosis: What Are the True Values? , 1995, Spine.

[53]  James H. McElhaney,et al.  COMBINED BENDING AND AXIAL LOADING RESPONSES OF THE HUMAN CERVICAL SPINE , 1988 .

[54]  H. van Mameren,et al.  Cervical Spine Motion in the Sagittal Plane II: Position of Segmental Averaged Instantaneous Centers of Rotation -A Cineradiographic Study , 1992, Spine.

[55]  E. Culham,et al.  The Effect of Initial Head Position on Active Cervical Axial Rotation Range of Motion in Two Age Populations , 1996, Spine.

[56]  R. Whitehill,et al.  Posterior Cervical Fusions Using Cerclage Wires, Methylmethacrylate Cement and Autogenous Bone Graft: An Experimental Study of a Canine Model , 1987, Spine.

[57]  T. Oxland,et al.  Multidirectional Instabilities of Traumatic Cervical Spine Injuries in a Porcine Model , 1989, Spine.

[58]  K. Uno,et al.  Occipitoatlantal and Occipitoaxial Hypermobility in Down Syndrome , 1996, Spine.

[59]  L. Claes,et al.  Biomechanics of Fixation Systems to the Cervical Spine , 1991, Spine.

[60]  Nathalie Maurel Modelisation geometrique et mecanique tridimensionnelle par elements finis du rachis cervical inferieur , 1993 .

[61]  M. Panjabi,et al.  A model of the alar ligaments of the upper cervical spine in axial rotation. , 1991, Journal of biomechanics.

[62]  Ronald P. McCabe,et al.  Cervical Stability After Sequential Capsule Resection , 1993, Spine.

[63]  C. Hirsch,et al.  Factors affecting the determination of the physical properties of femoral cortical bone. , 1966, Acta orthopaedica Scandinavica.

[64]  R. Yeasting,et al.  Anatomic Consideration of Transpedicular Screw Placement in the Cervical Spine: An Analysis of Two Approaches , 1996, Spine.