A Petrov–Galerkin formulation for the incompressible Navier–Stokes equations using equal order interpolation for velocity and pressure

A new Petrov-Galerkin method for the incompressible Navier-Stokes equations is presented. The use of the so-called ‘optimal upwind’ parameter in multidimensions is justified by a time-scale analysis of the relevant physical processes. The resulting procedure circumvents the Babuska-Brezzi condition and allows equal order interpolation for velocity and pressure to be used.

[1]  P. A. B. De Sampaio,et al.  A Petrov–Galerkin/modified operator formulation for convection–diffusion problems , 1990 .

[2]  J. Peraire,et al.  Compressible and incompressible flow; an algorithm for all seasons , 1990 .

[3]  O. C. Zienkiewicz,et al.  An ‘upwind’ finite element scheme for two‐dimensional convective transport equation , 1977 .

[4]  Robert L. Taylor,et al.  The patch test for mixed formulations , 1986 .

[5]  T. Hughes,et al.  A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. , 1982 .

[6]  Cedric Taylor,et al.  Finite Element Programming of the Navier Stokes Equations , 1981 .

[7]  O. Burggraf Analytical and numerical studies of the structure of steady separated flows , 1966, Journal of Fluid Mechanics.

[8]  K. W. Morton,et al.  Generalised Galerkin methods for first-order hyperbolic equations , 1980 .

[9]  O. C. Zienkiewicz,et al.  A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems , 1980 .

[10]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[11]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[12]  G. Carey,et al.  A stable least‐squares finite element method for non‐linear hyperbolic problems , 1988 .

[13]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .