In silico optimization of phase-change materials for digital memories: a survey of first-row transition-metal dopants for Ge2Sb2Te5

Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge-Sb-Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge2Sb2Te5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge2Sb2Te5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials.

[1]  Ab initio study on influence of dopants on crystalline and amorphous Ge2Sb2Te5 , 2011 .

[2]  J. Kossut,et al.  Structural Properties of MnTe, ZnTe, and ZnMnTe , 2004 .

[3]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[4]  S. Elliott,et al.  Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5memory alloy , 2011 .

[5]  Luping Shi,et al.  Synthesis and Characteristics of a Phase‐Change Magnetic Material , 2008 .

[6]  David J. H. Cockayne,et al.  Understanding atomic structures of amorphous C-doped Ge2Sb2Te5 phase-change memory materials , 2011 .

[7]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[8]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[9]  Xing Hu,et al.  A study of electronic structure and lattice dynamics of CoSb3 skutterudite , 2010 .

[10]  H. Shingai,et al.  Triple-Layer Rewritable Disc with Sb-Based Phase-Change Material , 2010 .

[11]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[12]  H. Wong,et al.  Nanoscale phase change memory materials. , 2012, Nanoscale.

[13]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[14]  Andrea L. Lacaita,et al.  Phase‐change memories , 2008 .

[15]  M. Tsai,et al.  Phase transformation in Mg–Sb thin films , 2010 .

[16]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[17]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[18]  H. Wong,et al.  Crystallization times of Ge–Te phase change materials as a function of composition , 2009 .

[19]  R. Zhao,et al.  Origin of ferromagnetism and the design principle in phase-change magnetic materials , 2011 .

[20]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[21]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[22]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.

[23]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[24]  Songlin Feng,et al.  Nitrogen-implanted Ge2Sb2Te5 film used as multilevel storage media for phase change random access memory , 2004 .

[25]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[26]  S. Raoux,et al.  The crystallization behavior of stoichiometric and off-stoichiometric Ga-Sb-Te materials for phase-change memory , 2011 .

[27]  Alireza Saeed-Akbari,et al.  Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics , 2013, Science and technology of advanced materials.

[28]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[29]  Tao Liu,et al.  A Circadian Rhythm Orchestrated by Histone Deacetylase 3 Controls Hepatic Lipid Metabolism , 2011, Science.

[30]  Enhanced amorphous stability of carbon-doped Ge2Sb2Te5: Ab Initio investigation , 2011 .

[31]  T. Tang,et al.  Si doping in Ge2Sb2Te5 film to reduce the writing current of phase change memory , 2007 .

[32]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[33]  T. Lee,et al.  Structural role of vacancies in the phase transition of Ge 2 Sb 2 Te 5 memory materials , 2011 .

[34]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[35]  Yoshiyuki Kageyama,et al.  Completely Erasable Phase Change Optical Disk , 1992 .

[36]  Yihong Wu,et al.  Fast phase transitions induced by picosecond electrical pulses on phase change memory cells , 2008 .

[37]  G. Aromí,et al.  Synthesis of 3d metallic single-molecule magnets , 2006 .

[38]  Y. Fukuma,et al.  Carrier-enhanced ferromagnetism in Ge1−xMnxTe , 2002 .

[39]  Junji Tominaga,et al.  The Effects of Metal-Doped GeSbTe Films on Light Scattering-Mode Super-Resolution Near-Field Structure (Super-RENS) , 2001 .

[40]  T. Hsieh,et al.  Phase transition behaviors of Mo- and nitrogen-doped Ge2Sb2Te5 thin films investigated by in situ electrical measurements , 2009 .

[41]  Riccardo Mazzarello,et al.  Magnetic Contrast in Phase‐Change Materials Doped with Fe Impurities , 2012, Advanced materials.

[42]  S. Ziegler,et al.  Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5 , 2004 .

[43]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[44]  M. Tsai,et al.  C-Sb Materials as Candidate for Phase-Change Memory , 2011, IEEE Transactions on Magnetics.

[45]  R. O. Jones,et al.  Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge 2 Sb 2 Te 5 , 2009 .

[46]  Wei Zhang,et al.  Magnetic Properties of Crystalline and Amorphous Phase‐Change Materials Doped with 3d Impurities , 2012, Advanced materials.

[47]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[50]  R. O. Jones,et al.  Publisher's Note: Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge2Sb2Te5 , 2009 .

[51]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[52]  X. Miao,et al.  Phase-change control of ferromagnetism in GeTe-based phase change magnetic thin-films by pulsed laser deposition , 2011 .

[53]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.

[54]  S. Elliott,et al.  Ab Initio computer simulation of the early stages of crystallization: application to Ge(2)Sb(2)Te(5) phase-change materials. , 2011, Physical review letters.

[55]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[56]  Structural, dynamical, and electronic properties of transition metal-doped Ge2Sb2Te5 phase-change materials simulated by ab initio molecular dynamics , 2012 .

[57]  Tow Chong Chong,et al.  Phase change random access memory cell with superlattice-like structure , 2006 .