Building a functional connectome of the Drosophila central complex

The central complex is a highly conserved insect brain region composed of morphologically stereotyped neurons that arborize in distinctively shaped substructures. The region is implicated in a wide range of behaviors and several modeling studies have explored its circuit computations. Most studies have relied on assumptions about connectivity between neurons based on their overlap in light microscopy images. Here, we present an extensive functional connectome of Drosophila melanogaster’s central complex at cell-type resolution. Using simultaneous optogenetic stimulation, calcium imaging and pharmacology, we tested the connectivity between 70 presynaptic-to-postsynaptic cell-type pairs. We identified numerous inputs to the central complex, but only a small number of output channels. Additionally, the connectivity of this highly recurrent circuit appears to be sparser than anticipated from light microscopy images. Finally, the connectivity matrix highlights the potentially critical role of a class of bottleneck interneurons. All data are provided for interactive exploration on a website.

[1]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[2]  Jonathan Green,et al.  Walking Drosophila aim to maintain a neural heading estimate at an internal goal angle , 2018, bioRxiv.

[3]  Chung-Chuan Lo,et al.  The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing , 2017, Front. Neuroinform..

[4]  Mark Johnson,et al.  Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango , 2017, Neuron.

[5]  Julie H. Simpson,et al.  A neural command circuit for grooming movement control , 2015, eLife.

[6]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[7]  Donghyung Lee,et al.  Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT) , 2017, eLife.

[8]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[9]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[10]  Vivek Jayaraman,et al.  The insect central complex , 2016, Current Biology.

[11]  Chung-Chuan Lo,et al.  Coupled symmetric and asymmetric circuits underlying spatial orientation in fruit flies , 2017, Nature Communications.

[12]  E Pannese,et al.  The Golgi Stain: invention, diffusion and impact on neurosciences. , 1999, Journal of the history of the neurosciences.

[13]  M. Carlsson,et al.  Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila , 2012, Neuroscience.

[14]  Aike Guo,et al.  Two Clusters of GABAergic Ellipsoid Body Neurons Modulate Olfactory Labile Memory in Drosophila , 2013, The Journal of Neuroscience.

[15]  R. Burgess,et al.  Identification and characterization of Drosophila genes for synaptic vesicle proteins , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  U. Homberg,et al.  Distribution of Dip‐allatostatin I‐like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex , 1996, The Journal of comparative neurology.

[17]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[18]  C. J. Stam,et al.  Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? , 2004, Neuroscience Letters.

[19]  Roland Strauss,et al.  Locomotor control by the central complex in Drosophila—An analysis of the tay bridge mutant , 2008, Developmental neurobiology.

[20]  E. Yaksi,et al.  Electrical Coupling between Olfactory Glomeruli , 2010, Neuron.

[21]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[22]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[23]  Christian Berg,et al.  The central control of oriented locomotion in insects - towards a neurobiological model , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[24]  D. F. Russell,et al.  Slow active potentials and bursting motor patterns in pyloric network of the lobster, Panulirus interruptus. , 1982, Journal of neurophysiology.

[25]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[26]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[27]  O. Shafer,et al.  Analysis of functional neuronal connectivity in the Drosophila brain. , 2012, Journal of neurophysiology.

[28]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[29]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[30]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[31]  Misha B. Ahrens,et al.  Labeling of active neural circuits in vivo with designed calcium integrators , 2015, Science.

[32]  Benjamin L. de Bivort,et al.  Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge , 2016, bioRxiv.

[33]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[34]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[35]  Alex J. Cope,et al.  A computational model of the integration of landmarks and motion in the insect central complex , 2017, PloS one.

[36]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[37]  Glenn C. Turner,et al.  Integration of the olfactory code across dendritic claws of single mushroom body neurons , 2013, Nature Neuroscience.

[38]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[39]  Aljoscha Nern,et al.  Neural signatures of dynamic stimulus selection in Drosophila , 2017, Nature Neuroscience.

[40]  Roland Strauss,et al.  Visual Targeting of Motor Actions in Climbing Drosophila , 2010, Current Biology.

[41]  Rachel I. Wilson,et al.  Stereotyped connectivity and computations in higher-order olfactory neurons , 2013, Nature Neuroscience.

[42]  A. J. Pollack,et al.  Neural Activity in the Central Complex of the Insect Brain Is Linked to Locomotor Changes , 2010, Current Biology.

[43]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[44]  Michael E Hasselmo,et al.  Persistent Firing Supported by an Intrinsic Cellular Mechanism in a Component of the Head Direction System , 2009, The Journal of Neuroscience.

[45]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[46]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[47]  Eric J. Warrant,et al.  Neural coding underlying the cue preference for celestial orientation , 2015, Proceedings of the National Academy of Sciences.

[48]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[49]  Stanley Heinze,et al.  Polarized-Light Processing in Insect Brains: Recent Insights from the Desert Locust, the Monarch Butterfly, the Cricket, and the Fruit Fly , 2014 .

[50]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[51]  Wei Zhang,et al.  Functional Connectivity and Selective Odor Responses of Excitatory Local Interneurons in Drosophila Antennal Lobe , 2010, Neuron.

[52]  Aaron DiAntonio,et al.  Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS , 2008, The Journal of comparative neurology.

[53]  R. Dolan,et al.  Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[54]  Peter T Weir,et al.  Central complex neurons exhibit behaviorally gated responses to visual motion in Drosophila. , 2014, Journal of neurophysiology.

[55]  James W. Truman,et al.  Transvection Is Common Throughout the Drosophila Genome , 2012, Genetics.

[56]  U. Homberg,et al.  Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria , 1994, Journal of Comparative Physiology A.

[57]  Matthias Landgraf,et al.  Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[58]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[59]  L. Kahsai,et al.  Chemical neuroanatomy of the Drosophila central complex: Distribution of multiple neuropeptides in relation to neurotransmitters , 2011, The Journal of comparative neurology.

[60]  D. Owald,et al.  Maturation of active zone assembly by Drosophila Bruchpilot , 2009, The Journal of cell biology.

[61]  Barry J. Dickson,et al.  The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system , 2017, bioRxiv.

[62]  Peter T Weir,et al.  Functional divisions for visual processing in the central brain of flying Drosophila , 2015, Proceedings of the National Academy of Sciences.

[63]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[64]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[65]  Roland Strauss,et al.  Cell types and coincident synapses in the ellipsoid body of Drosophila , 2014, The European journal of neuroscience.

[66]  Wei Zhang,et al.  Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway , 2010, Proceedings of the National Academy of Sciences.

[67]  Liqun Luo,et al.  Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development , 2001, Trends in Neurosciences.

[68]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[69]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[70]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[71]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[72]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[73]  Stanley Heinze,et al.  Transformation of Polarized Light Information in the Central Complex of the Locust , 2009, The Journal of Neuroscience.

[74]  Stanley Heinze,et al.  Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons , 2008, The Journal of comparative neurology.

[75]  Davi D Bock,et al.  Volume electron microscopy for neuronal circuit reconstruction , 2012, Current Opinion in Neurobiology.

[76]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[77]  B. S. Baker,et al.  Central neural circuitry mediating courtship song perception in male Drosophila , 2015, eLife.

[78]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[79]  Hokto Kazama,et al.  Parallel encoding of recent visual experience and self-motion during navigation in Drosophila , 2017, Nature Neuroscience.

[80]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[81]  Hugo J. Bellen,et al.  P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster , 2006, Science.

[82]  Vincenzo G. Fiore,et al.  In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation , 2017, Front. Behav. Neurosci..

[83]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[84]  S. R. Y. Cajal,et al.  Les nouvelles idées sur la structure du système nerveux chez l'homme et chez les vertébrés , 1894 .

[85]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[86]  Romain Franconville Central complex functional connectivity , 2017 .

[87]  Michael H. Dickinson,et al.  Sun Navigation Requires Compass Neurons in Drosophila , 2018, Current Biology.

[88]  Julie H. Simpson,et al.  Drosophila Brainbow: a recombinase-based fluorescent labeling technique to subdivide neural expression patterns , 2011, Nature Methods.

[89]  L. Barrett‐Lennard,et al.  Graded persistent activity in entorhinal cortex neurons , 2002 .

[90]  R. Ritzmann,et al.  Neural activity in the central complex of the cockroach brain is linked to turning behaviors , 2013, Journal of Experimental Biology.

[91]  Kendal Broadie,et al.  Living synaptic vesicle marker: Synaptotagmin‐GFP , 2002, Genesis.

[92]  Michael H. Dickinson,et al.  Sun navigation requires compass neurons in Drosophila , 2018 .

[93]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[94]  Wulfram Gerstner,et al.  Extraction of Network Topology From Multi-Electrode Recordings: Is there a Small-World Effect? , 2011, Front. Comput. Neurosci..

[95]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[96]  Aurel A. Lazar,et al.  Generating Executable Models of the Drosophila Central Complex , 2017, Front. Behav. Neurosci..