Feature preserving noise removal for binary voxel volumes using 3D surface skeletons

Abstract Skeletons are well-known descriptors that capture the geometry and topology of 2D and 3D shapes. We leverage these properties by using surface skeletons to remove noise from 3D shapes. For this, we extend an existing method that removes noise, but keeps important (salient) corners for 2D shapes. Our method detects and removes large-scale, complex, and dense multiscale noise patterns that contaminate virtually the entire surface of a given 3D shape, while recovering its main (salient) edges and corners. Our method can treat any (voxelized) 3D shapes and surface-noise types, is computationally scalable, and has one easy-to-set parameter. We demonstrate the added-value of our approach by comparing our results with several known 3D shape denoising methods.

[1]  Frédo Durand,et al.  Non-iterative, feature-preserving mesh smoothing , 2003, ACM Trans. Graph..

[2]  Yutaka Ohtake,et al.  Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding , 2003, Proceedings Computer Graphics International 2003.

[3]  Wenyu Liu,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Baining Guo,et al.  Rolling guidance normal filter for geometric processing , 2015, ACM Trans. Graph..

[5]  F. Chazal,et al.  The λ-medial axis , 2005 .

[6]  Alexandru Telea,et al.  Surface and Curve Skeletonization of Large 3D Models on the GPU , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  F. Guichard,et al.  Geometric partial differential equations and iterative filtering , 1998 .

[8]  Leif Kobbelt,et al.  Geometric fairing of irregular meshes for free-form surface design , 2001, Comput. Aided Geom. Des..

[9]  Kaleem Siddiqi,et al.  Flux driven automatic centerline extraction , 2005, Medical Image Anal..

[10]  Bao Li,et al.  Robust normal estimation for point clouds with sharp features , 2010, Comput. Graph..

[11]  Mark A. Ganter,et al.  Skeleton-based modeling operations on solids , 1997, SMA '97.

[12]  Martin Rumpf,et al.  Robust feature detection and local classification for surfaces based on moment analysis , 2004, IEEE Transactions on Visualization and Computer Graphics.

[13]  Andrea Tagliasacchi,et al.  3D Skeletons: A State‐of‐the‐Art Report , 2016, Comput. Graph. Forum.

[14]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[15]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[16]  Julien Jomier,et al.  Registration and Analysis of Vascular Images , 2003, International Journal of Computer Vision.

[17]  Konrad Polthier,et al.  Anisotropic smoothing of point sets, , 2005, Comput. Aided Geom. Des..

[18]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[19]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[20]  Matthias Zwicker,et al.  Deep points consolidation , 2015, ACM Trans. Graph..

[21]  Petros Maragos,et al.  Morphological filters-Part II: Their relations to median, order-statistic, and stack filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[22]  M. Pauly,et al.  Discrete scale axis representations for 3D geometry , 2010, ACM Trans. Graph..

[23]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[24]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[25]  G. Taubin LINEAR ANISOTROPIC MESH FILTERING , 2001 .

[26]  Markus H. Gross,et al.  Algebraic point set surfaces , 2007, ACM Trans. Graph..

[27]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[28]  Daniel Cohen-Or,et al.  Consolidation of unorganized point clouds for surface reconstruction , 2009, ACM Trans. Graph..

[29]  Daniel Cohen-Or,et al.  Bilateral mesh denoising , 2003 .

[30]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[31]  Benjamin B. Kimia,et al.  The Medial Scaffold of 3D Unorganized Point Clouds , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Yutaka Ohtake,et al.  Mesh smoothing via mean and median filtering applied to face normals , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[33]  Markus H. Gross,et al.  Feature Preserving Point Set Surfaces based on Non‐Linear Kernel Regression , 2009, Comput. Graph. Forum.

[34]  Alexandru Telea,et al.  Multiscale 2D medial axes and 3D surface skeletons by the image foresting transform , 2017 .

[35]  Youyi Zheng,et al.  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Bilateral Normal Filtering for Mesh Denoising , 2022 .

[36]  David Coeurjolly,et al.  Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Ross T. Whitaker,et al.  Geometric surface processing via normal maps , 2003, TOGS.

[38]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[39]  Andrea Torsello,et al.  An Adaptive Hierarchical Approach to the Extraction of High Resolution Medial Surfaces , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[40]  Yutaka Ohtake,et al.  A comparison of mesh smoothing methods , 2003 .

[41]  Paolo Cignoni,et al.  MeshLab: an Open-Source Mesh Processing Tool , 2008, Eurographics Italian Chapter Conference.

[42]  Ralph R. Martin,et al.  Noise in 3D laser range scanner data , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[43]  James A. Sethian,et al.  Image Processing: Flows under Min/Max Curvature and Mean Curvature , 1996, CVGIP Graph. Model. Image Process..

[44]  Benjamin B. Kimia,et al.  Boundary Smoothing via Symmetry Transforms , 2001, Journal of Mathematical Imaging and Vision.

[45]  Bailin Deng,et al.  Guided Mesh Normal Filtering , 2015, Comput. Graph. Forum.

[46]  Tiow Seng Tan,et al.  Parallel Banding Algorithm to compute exact distance transform with the GPU , 2010, I3D '10.

[47]  Lei He,et al.  Mesh denoising via L0 minimization , 2013, ACM Trans. Graph..

[48]  Martin Rumpf,et al.  A Level Set Method for Anisotropic Geometric Diffusion in 3D Image Processing , 2002, SIAM J. Appl. Math..

[49]  Dinesh Manocha,et al.  Homotopy-preserving medial axis simplification , 2005, SPM '05.

[50]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[51]  Alexandru Telea,et al.  An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Françoise Dibos,et al.  A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets , 1994, Proceedings of 1st International Conference on Image Processing.

[53]  Tien-Tsin Wong,et al.  Feature-preserving optimization for noisy mesh using joint bilateral filter and constrained Laplacian smoothing , 2013 .

[54]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[55]  Robert Strzodka,et al.  Generalized distance transforms and skeletons in graphics hardware , 2004, VISSYM'04.

[56]  Yuzhong Shen,et al.  Fuzzy vector median-based surface smoothing , 2004, IEEE Transactions on Visualization and Computer Graphics.

[57]  D. Frank Hsu,et al.  On the generation and pruning of skeletons using generalized Voronoi diagrams , 2012, Pattern Recognit. Lett..

[58]  Wim H. Hesselink,et al.  Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[60]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[61]  Xing Zhang,et al.  A skeleton pruning algorithm based on information fusion , 2013, Pattern Recognit. Lett..

[62]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.

[63]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Punam K. Saha,et al.  A survey on skeletonization algorithms and their applications , 2016, Pattern Recognit. Lett..

[65]  Konrad Polthier,et al.  Constraint-based fairing of surface meshes , 2007 .

[66]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[67]  Jacques-Olivier Lachaud,et al.  Laplace–Beltrami Operator on Digital Surfaces , 2018, Journal of Mathematical Imaging and Vision.

[68]  Ligang Liu,et al.  Mesh Denoising Guided by Patch Normal Co-Filtering via Kernel Low-Rank Recovery , 2019, IEEE Transactions on Visualization and Computer Graphics.

[69]  Pierre Alliez,et al.  Noname manuscript No. (will be inserted by the editor) Feature-Preserving Surface Reconstruction and Simplification from Defect-Laden Point Sets , 2013 .

[70]  Alexandru Telea,et al.  An Augmented Fast Marching Method for Computing Skeletons and Centerlines , 2002, VisSym.

[71]  Alexandru Telea Feature Preserving Smoothing of Shapes Using Saliency Skeletons , 2012, Visualization in Medicine and Life Sciences II.