A Novel Diblock Copolymer with a Supramolecular Polymer Block and a Traditional Polymer Block: Preparation, Controllable Self‐Assembly in Water, and Application in Controlled Release

A novel diblock copolymer with a hydrophobic supramolecular polymer block and a hydrophilic traditional polymer block has been prepared. Control over the chain length ratio of the two blocks is obtained by simply changing the concentration proportion of the monomer of the supramolecular polymer block to the traditional polymer block in solution. When the chain length ratio of the two blocks is changed, the formation of various self-assembly morphologies is achieved.

[1]  Ryan C Hayward,et al.  Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial Instabilities. , 2008, Journal of the American Chemical Society.

[2]  V. Vukotic,et al.  Coordination polymers containing rotaxane linkers. , 2012, Chemical Society reviews.

[3]  Xia Ding,et al.  A Multiresponsive, Shape‐Persistent, and Elastic Supramolecular Polymer Network Gel Constructed by Orthogonal Self‐Assembly , 2012, Advanced materials.

[4]  Simon J. Holder,et al.  New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles , 2011 .

[5]  G. Riess,et al.  Micellization of block copolymers , 2003 .

[6]  Hongwei Shen,et al.  MULTIPLE PH-INDUCED MORPHOLOGICAL CHANGES IN AGGREGATES OF POLYSTYRENE-BLOCK-POLY(4-VINYLPYRIDINE) IN DMF/H2O MIXTURES , 1999 .

[7]  E. W. Meijer,et al.  Materials science: Supramolecular polymers , 2008, Nature.

[8]  Feihe Huang,et al.  A supramolecular triarm star polymer from a homotritopic tris(crown ether) host and a complementary monotopic paraquat-terminated polystyrene guest by a supramolecular coupling method. , 2005, Journal of the American Chemical Society.

[9]  Mingming Zhang,et al.  A Crown Ether Appended Super Gelator with Multiple Stimulus Responsiveness , 2012, Advanced materials.

[10]  Feihe Huang,et al.  A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. , 2013, Journal of the American Chemical Society.

[11]  T. Azzam,et al.  Control of vesicular morphologies through hydrophobic block length. , 2006, Angewandte Chemie.

[12]  H. Gibson,et al.  Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules. , 2003, Journal of the American Chemical Society.

[13]  Yiyong Mai,et al.  Self-assembly of block copolymers. , 2012, Chemical Society reviews.

[14]  Mitchell A. Winnik,et al.  Cylindrical Block Copolymer Micelles and Co-Micelles of Controlled Length and Architecture , 2007, Science.

[15]  Bo Zheng,et al.  Stimuli-responsive supramolecular polymeric materials. , 2012, Chemical Society reviews.

[16]  Kai Qi,et al.  Disk morphology and disk-to-cylinder tunability of poly(acrylic acid)-b-poly(methyl acrylate)-b-polystyrene triblock copolymer solution-state assemblies. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[17]  Feng Wang,et al.  Controlled formation of a supramolecular polymer network driven by heterometallic coordination interactions , 2013 .

[18]  Xi Zhang,et al.  Characterization of supramolecular polymers. , 2012, Chemical Society reviews.

[19]  D. Savin,et al.  Self‐assembly and responsiveness of polypeptide‐based block copolymers: How “Smart” behavior and topological complexity yield unique assembly in aqueous media , 2013 .

[20]  Kai Liu,et al.  Host-enhanced π-π interaction for water-soluble supramolecular polymerization. , 2011, Chemistry.

[21]  T. Lodge,et al.  Sphere, cylinder, and vesicle nanoaggregates in poly(styrene-b-isoprene) diblock copolymer solutions , 2006 .

[22]  Feihe Huang,et al.  Formation of linear main-chain polypseudorotaxanes with supramolecular polymer backbones via two self-sorting host-guest recognition motifs. , 2009, Chemical communications.

[23]  Taiho Park,et al.  Formation of a miscible supramolecular polymer blend through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex. , 2006, Journal of the American Chemical Society.

[24]  H. Gibson,et al.  Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties , 1999 .

[25]  Feihe Huang,et al.  Synthesis of a water-soluble bis(m-phenylene)-32-crown-10-based cryptand and its pH-responsive binding to a paraquat derivative. , 2013, Chemical communications.

[26]  Yiyong Mai,et al.  Selective localization of preformed nanoparticles in morphologically controllable block copolymer aggregates in solution. , 2012, Accounts of chemical research.

[27]  Frank S Bates,et al.  On the Origins of Morphological Complexity in Block Copolymer Surfactants , 2003, Science.

[28]  Y. Anraku,et al.  Bioactive polymeric metallosomes self-assembled through block copolymer-metal complexation. , 2012, Journal of the American Chemical Society.

[29]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[30]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[31]  F. Schacher,et al.  Functional block copolymers: nanostructured materials with emerging applications. , 2012, Angewandte Chemie.

[32]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[33]  T. Park,et al.  A supramolecular multi-block copolymer with a high propensity for alternation. , 2006, Journal of the American Chemical Society.

[34]  T. Park,et al.  Interplay of fidelity, binding strength, and structure in supramolecular polymers. , 2006, Journal of the American Chemical Society.

[35]  Markus Antonietti,et al.  Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids , 1998 .

[36]  Emily A. Hoff,et al.  Stimuli-responsive peptide-based ABA-triblock copolymers: unique morphology transitions with pH. , 2012, Macromolecular rapid communications.

[37]  S. Armes,et al.  Mechanistic insights for block copolymer morphologies: how do worms form vesicles? , 2011, Journal of the American Chemical Society.

[38]  Feihe Huang,et al.  Formation of a Linear Supramolecular Polymer by Self-Assembly of Two Homoditopic Monomers Based on the Bis(m-phenylene)-32-crown-10/Paraquat Recognition Motif , 2007 .

[39]  Yue Ding,et al.  Multistimuli Responsive Supramolecular Cross-Linked Networks On the Basis of the Benzo-21-Crown-7/Secondary Ammonium Salt Recognition Motif , 2012 .

[40]  K. Kataoka,et al.  Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications , 2006 .

[41]  U. Schubert,et al.  High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. , 2005, Journal of the American Chemical Society.

[42]  Oren A Scherman,et al.  Supramolecular block copolymers with cucurbit[8]uril in water. , 2008, Angewandte Chemie.

[43]  T. Lodge,et al.  Thermoreversible Morphology Transitions of Poly(styrene-b-dimethylsiloxane) Diblock Copolymer Micelles in Dilute Solution , 2007 .

[44]  Y. Ko,et al.  Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. , 2004, Chemical communications.

[45]  William F. Edmonds,et al.  Disk Micelles from Nonionic Coil−Coil Diblock Copolymers , 2006 .

[46]  Feihe Huang,et al.  Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. , 2010, Angewandte Chemie.

[47]  Oren A Scherman,et al.  Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. , 2012, Journal of the American Chemical Society.

[48]  Ning Li,et al.  Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. , 2008, Journal of the American Chemical Society.

[49]  Bo Zheng,et al.  Supramolecular polymers constructed by crown ether-based molecular recognition. , 2012, Chemical Society reviews.

[50]  Sheng Zhong,et al.  Block Copolymer Assembly via Kinetic Control , 2007, Science.

[51]  A. Eisenberg,et al.  1998 E.W.R. Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland , 1999 .

[52]  Xi Zhang,et al.  Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions. , 2010, Angewandte Chemie.

[53]  A. Schedl,et al.  Length control and block-type architectures in worm-like micelles with polyethylene cores. , 2012, Journal of the American Chemical Society.

[54]  Feihe Huang,et al.  Formation of a supramolecular hyperbranched polymer from self-organization of an AB2 monomer containing a crown ether and two paraquat moieties. , 2004, Journal of the American Chemical Society.

[55]  N. Rapoport Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery , 2007 .

[56]  Lifeng Zhang,et al.  Formation of crew‐cut aggregates of various morphologies from amphiphilic block copolymers in solution , 1998 .

[57]  C. Böttcher,et al.  Switchable supramolecular polymers from the self-assembly of a small monomer with two orthogonal binding interactions. , 2011, Journal of the American Chemical Society.

[58]  Feihe Huang,et al.  Responsive supramolecular gels constructed by crown ether based molecular recognition. , 2009, Angewandte Chemie.

[59]  Feihe Huang,et al.  pH-responsive supramolecular polymerization in aqueous media driven by electrostatic attraction-enhanced crown ether-based molecular recognition. , 2012, Macromolecular rapid communications.

[60]  W. Dehaen,et al.  The introduction of pi-pi stacking moieties for fabricating stable micellar structure: formation and dynamics of disklike micelles. , 2005, Angewandte Chemie.

[61]  A. Eisenberg,et al.  Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions , 1996 .

[62]  W. Hinsberg,et al.  Block copolymer based nanostructures: materials, processes, and applications to electronics. , 2010, Chemical reviews.

[63]  S. Armes,et al.  Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution. , 2011, Journal of the American Chemical Society.

[64]  Feihe Huang,et al.  Supramolecular Micelles Constructed by Crown Ether-Based Molecular Recognition , 2012 .

[65]  Bo Zheng,et al.  A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. , 2011, Angewandte Chemie.

[66]  Leyong Wang,et al.  Advanced supramolecular polymers constructed by orthogonal self-assembly. , 2012, Chemical Society reviews.

[67]  David Sinton,et al.  Morphological control via chemical and shear forces in block copolymer self-assembly in the lab-on-chip. , 2013, ACS nano.

[68]  Kui Yu,et al.  Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution , 1998 .

[69]  S. Armes,et al.  From a Water-Immiscible Monomer to Block Copolymer Nano-Objects via a One-Pot RAFT Aqueous Dispersion Polymerization Formulation , 2013 .