Hot spots in convex domains are in the tips (up to an inradius)

Abstract Let be a bounded, convex domain and let be the first nontrivial Laplacian eigenfunction with Neumann boundary conditions. The hot spots conjecture claims that the maximum and minimum are attained at the boundary. We show that they are attained far away from one another: if satisfy then every maximum and minimum is assumed within distance of x1 and x2, where c is a universal constant (which is the optimal scaling up to the value of c).

[1]  S. Steinerberger Sharp L1-Poincaré inequalities correspond to optimal hypersurface cuts , 2013, 1309.6211.

[2]  Stefan Steinerberger,et al.  On the Location of Maxima of Solutions of Schrödinger's Equation , 2018 .

[3]  Qi S. Zhang Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture , 2010 .

[4]  L. Saloff-Coste,et al.  The heat kernel and its estimates , 2010 .

[5]  Nicolas Victoir,et al.  Analysis on local Dirichlet spaces , 2010 .

[6]  D. Krejčiřík,et al.  Location of hot spots in thin curved strips , 2017, Journal of Differential Equations.

[7]  K. Burdzy Neumann eigenfunctions and Brownian couplings , 2004 .

[8]  Daniel Grieser,et al.  Asymptotics of the first nodal line of a convex domain , 1996 .

[9]  Wendelin Werner,et al.  A counterexample to the “hot spots” conjecture , 1998 .

[10]  G. Mancini,et al.  Sobolev inequalities in the , 2011 .

[11]  T. Coulhon,et al.  Gaussian heat kernel bounds through elliptic Moser iteration , 2014, 1407.3906.

[12]  Bernhard Kawohl,et al.  Rearrangements and Convexity of Level Sets in PDE , 1985 .

[13]  L. Saloff-Coste,et al.  A note on Poincaré, Sobolev, and Harnack inequalities , 1992 .

[14]  A. Grigor’yan THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS , 1992 .

[15]  A planar convex domain with many isolated “ hot spots” on the boundary , 2013 .

[16]  R. Magnanini An introduction to the study of critical points of solutions of elliptic and parabolic equations , 2016, 1604.00530.

[17]  R. Atar,et al.  On Neumann eigenfunctions in lip domains , 2004 .

[18]  Richard F. Bass,et al.  Fiber Brownian motion and the `hot spots''problem Duke Math , 2000 .

[19]  David Jerison,et al.  The “hot spots” conjecture for domains with two axes of symmetry , 2000 .

[20]  L. Brasco,et al.  The Heart of a Convex Body , 2012, 1202.5223.

[21]  R. Magnanini,et al.  Critical points of solutions of degenerate elliptic equations in the plane , 2008, 0812.4244.

[22]  Laurent Salo-Coste The heat kernel and its estimates , 2009 .

[23]  An inequality for potentials and the "hot-spots" conjecture , 2004 .

[24]  The “hot spots” conjecture for a certain class of planar convex domains , 2009 .

[25]  Thomas Beck Uniform Level Set Estimates for Ground State Eigenfunctions , 2018, SIAM J. Math. Anal..

[26]  Extreme Values of the Fiedler Vector on Trees , 2019, ArXiv.

[27]  Fikret Er,et al.  Hot spots. , 2014, CJEM.

[28]  Krzysztof Burdzy The hot spots problem in planar domains with one hole , 2004 .

[29]  Daniel Grieser,et al.  The size of the first eigenfunction of a convex planar domain , 1998 .

[30]  Jianfeng Lu,et al.  A dimension-free Hermite–Hadamard inequality via gradient estimates for the torsion function , 2019, Proceedings of the American Mathematical Society.

[31]  M. Pascu Scaling coupling of reflecting Brownian motions and the hot spots problem , 2002 .

[32]  Karl-Theodor Sturm,et al.  Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations , 1995 .

[33]  K. Burdzy The "hot spots" conjecture , 2013 .

[34]  Krzysztof Burdzy On Nodal Lines of Neumann Eigenfunctions , 2002 .

[35]  Chris Judge,et al.  Euclidean triangles have no hot spots , 2018, Annals of Mathematics.

[36]  K. Burdzy,et al.  On the “Hot Spots” Conjecture of J. Rauch , 1999 .

[37]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[38]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[39]  Antonios D. Melas On the nodal line of the second eigenfunction of the Laplacian in $\mathbf{R}^2$ , 1992 .

[40]  Closed nodal lines and interior hot spots of the second eigenfunction of the Laplacian on surfaces , 2000, math/0009153.

[41]  Locating the first nodal linein the Neumann problem , 2000 .

[42]  A. Chenciner A note by Poincare , 2005 .