P2-Na2/3Mn0.8M0.1M′0.1O2 (M = Zn, Fe and M′ = Cu, Al, Ti): A Detailed Crystal Structure Evolution Investigation

[1]  V. K. Peterson,et al.  A Robust Coin‐Cell Design for In Situ Synchrotron‐based X‐Ray Powder Diffraction Analysis of Battery Materials , 2020 .

[2]  Yang Ren,et al.  Ultralow‐Strain Zn‐Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage , 2020, Advanced Functional Materials.

[3]  Xin Li,et al.  A Study of Cu Doping Effects in P2‐Na 0.75 Mn 0.6 Fe 0.2 (Cu x Ni 0.2‐ x )O 2 Layered Cathodes for Sodium‐Ion Batteries , 2020 .

[4]  Yansong Bai,et al.  High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries , 2019, Electrochimica Acta.

[5]  P. Bruce,et al.  Nature of the “Z”-phase in layered Na-ion battery cathodes , 2019, Energy & Environmental Science.

[6]  Xing-long Wu,et al.  P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as advanced cathode material for sodium-ion batteries: Electrochemical properties and electrode kinetics , 2019, Journal of Alloys and Compounds.

[7]  J. Carrasco,et al.  Unraveling the role of Ti in the stability of positive layered oxide electrodes for rechargeable Na-ion batteries , 2019, Journal of Materials Chemistry A.

[8]  Xiao‐Qing Yang,et al.  Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research , 2019, Advanced materials.

[9]  Hun‐Gi Jung,et al.  High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1-x]O2 cathodes for practical sodium-ion batteries , 2019, Journal of Power Sources.

[10]  Wanxia Huang,et al.  A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries , 2019, Journal of Power Sources.

[11]  Meilin Liu,et al.  Lithium-Doping Stabilized High-Performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 Cathode for Sodium Ion Batteries. , 2019, Journal of the American Chemical Society.

[12]  R. Hu,et al.  Co-Substitution Enhances the Rate Capability and Stabilizes the Cyclic Performance of O3-Type Cathode NaNi0.45- xMn0.25Ti0.3Co xO2 for Sodium-Ion Storage at High Voltage. , 2019, ACS applied materials & interfaces.

[13]  Mihui Park,et al.  Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries , 2019, Nature Communications.

[14]  N. Sharma,et al.  Rate and Composition Dependence on the Structural–Electrochemical Relationships in P2–Na2/3Fe1–yMnyO2 Positive Electrodes for Sodium-Ion Batteries , 2018, Chemistry of Materials.

[15]  T. Rojo,et al.  P2 manganese rich sodium layered oxides: Rational stoichiometries for enhanced performance , 2018, Journal of Power Sources.

[16]  F. Fauth,et al.  On the dynamics of transition metal migration and its impact on the performance of layered oxides for sodium-ion batteries: NaFeO2 as a case study , 2018 .

[17]  M. Jamesh,et al.  Advancement of technology towards developing Na-ion batteries , 2018 .

[18]  K. Hemalatha,et al.  Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1-xO2 cathodes for sodium-ion batteries. , 2018, Dalton transactions.

[19]  P. Bruce,et al.  Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. , 2018, Nature chemistry.

[20]  K. Kubota,et al.  P′2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between Orthorhombic Distortion and Electrochemical Property , 2017 .

[21]  N. Sharma,et al.  Structure–Electrochemical Evolution of a Mn-Rich P2 Na2/3Fe0.2Mn0.8O2 Na-Ion Battery Cathode , 2017 .

[22]  L. Nazar,et al.  Structural Evolution and Redox Processes Involved in the Electrochemical Cycling of P2–Na0.67[Mn0.66Fe0.20Cu0.14]O2 , 2017 .

[23]  Hongyu Guan,et al.  P2-type Na 2/3 Mn 1-x Al x O 2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics , 2017 .

[24]  Nagore Ortiz-Vitoriano,et al.  High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries , 2017 .

[25]  Lei Wang,et al.  Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition , 2017 .

[26]  J. Hassoun,et al.  Toward high energy density cathode materials for sodium-ion batteries: investigating the beneficial effect of aluminum doping on the P2-type structure , 2017 .

[27]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[28]  N. Sharma,et al.  Crystallographic Evolution of P2 Na2/3Fe0.4Mn0.6O2 Electrodes during Electrochemical Cycling , 2016 .

[29]  Neeraj Sharma,et al.  High-Performance P2-Phase Na2/3Mn0.8Fe0.1Ti0.1O2 Cathode Material for Ambient-Temperature Sodium-Ion Batteries , 2016 .

[30]  Chun‐Sing Lee,et al.  Copper substituted P2-type Na0.67CuxMn1−xO2: a stable high-power sodium-ion battery cathode , 2015 .

[31]  L. Nazar,et al.  Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability , 2015 .

[32]  Lin Gu,et al.  Air‐Stable Copper‐Based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium‐Ion Batteries , 2015, Advanced science.

[33]  M. J. McDonald,et al.  P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries , 2015 .

[34]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[35]  A. Tanaka,et al.  Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries , 2014 .

[36]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[37]  J. L. Amo,et al.  Synthesis and characterization of pure P2- and O3-Na2/3Fe2/3Mn1/3O2 as cathode materials for Na ion batteries , 2014 .

[38]  B. Scrosati,et al.  High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium‐Ion Batteries , 2014 .

[39]  Dongwook Han,et al.  Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries. , 2014, ChemSusChem.

[40]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[41]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[42]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[43]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[44]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[45]  Zhonghua Lu,et al.  In Situ X-Ray Diffraction Study of P 2 ­ Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 , 2001 .

[46]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[47]  K. Kubota,et al.  Origin of Enhanced Capacity Retention of P2-Type Na2/3Ni1/3-xMn2/3CuxO2for Na-Ion Batteries , 2017 .

[48]  Zhongbo Hu,et al.  Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries , 2017 .

[49]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[50]  N. Sharma,et al.  High Performance Composite Lithium-Rich Nickel Manganese Oxide Cathodes for Lithium-Ion Batteries , 2013 .

[51]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[52]  D. Richard,et al.  Analysis and Visualisation of Neutron-Scattering Data , 1996 .

[53]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .