Multi-Objective Semi-Supervised Feature Selection and Model Selection Based on Pearson's Correlation Coefficient

This paper presents a Semi-Supervised Feature Selection Method based on a univariate relevance measure applied to a multiobjective approach of the problem. Along the process of decision of the optimal solution within Pareto-optimal set, atempting to maximize the relevance indexes of each feature, it is possible to determine a minimum set of relevant features and, at the same time, to determine the optimal model of the neural network.

[1]  Mike West,et al.  The Use of Unlabeled Data in Predictive Modeling , 2007, 0710.4618.

[2]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[3]  Yuefei Zhu,et al.  Efficient Hybrid Password-Based Authenticated Group Key Exchange , 2009, APWeb/WAIM.

[4]  Michael J. Todd,et al.  The Ellipsoid Method: A Survey , 1980 .

[5]  Michael J. Todd,et al.  Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..

[6]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[7]  Antônio de Pádua Braga,et al.  Semi-supervised model applied to the prediction of the response to preoperative chemotherapy for breast cancer , 2011, Soft Comput..

[8]  C. A. Murthy,et al.  Unsupervised Feature Selection Using Feature Similarity , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Daoqiang Zhang,et al.  Semi-Supervised Dimensionality Reduction ∗ , 2007 .

[10]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[11]  Carla E. Brodley,et al.  Feature Selection for Unsupervised Learning , 2004, J. Mach. Learn. Res..

[12]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[13]  Shaoning Pang,et al.  Transductive support vector machines and applications in bioinformatics for promoter recognition , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[14]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[15]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[16]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[17]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[18]  Wei Pan,et al.  On Efficient Large Margin Semisupervised Learning: Method and Theory , 2009, J. Mach. Learn. Res..

[19]  Myron Wish,et al.  Three-Way Multidimensional Scaling , 1978 .

[20]  Michelangelo Ceci,et al.  A relational approach to probabilistic classification in a transductive setting , 2009, Eng. Appl. Artif. Intell..

[21]  Bernhard Schölkopf,et al.  Introduction to Semi-Supervised Learning , 2006, Semi-Supervised Learning.

[22]  Antônio de Pádua Braga,et al.  Sliding mode neural network control of an induction motor drive , 2003 .

[23]  Lei Yu,et al.  Kernel-Based Transductive Learning with Nearest Neighbors , 2009, APWeb/WAIM.

[24]  Ricardo H. C. Takahashi,et al.  Improving generalization of MLPs with multi-objective optimization , 2000, Neurocomputing.

[25]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[26]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[27]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[28]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .