A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION

Detailed characterization of exoplanets has begun to yield measurements of their atmospheric properties that constrain the planets’ origins and evolution. For example, past observations of the dayside emission spectrum of the hot Jupiter WASP-12b indicated that its atmosphere has a high carbon-tooxygen ratio (C/O > 1), suggesting it had a dierent formation pathway than is commonly assumed for giant planets. Here we report a precise near-infrared transmission spectrum for WASP-12b based on six transit observations with the Hubble Space Telescope/Wide Field Camera 3. We bin the data in 13 spectrophotometric light curves from 0.84 - 1.67 m and measure the transit depths to a median precision of 51 ppm. We retrieve the atmospheric properties using the transmission spectrum and nd strong evidence for water absorption (7 condence). This detection marks the rst high-condence, spectroscopic identication of a molecule in the atmosphere of WASP-12b. The retrieved 1 water volume mixing ratio is between 10 5 10 2 , which is consistent with C/O > 1 to within 2 . However, we also introduce a new retrieval parameterization that ts for C/O and metallicity under the assumption of chemical equilibrium. With this approach, we constrain C/O to 0:5 +0:2 0:3 at 1 and rule out a carbon-rich atmosphere composition (C/O> 1) at > 3 condence. Further observations and modeling of the planet’s global thermal structure and dynamics would aid in resolving the tension between our inferred C/O and previous constraints. Our ndings highlight the importance of obtaining high-precision data with multiple observing techniques in order to obtain robust constraints on the chemistry and physics of exoplanet atmospheres. Subject headings: planets and satellites: atmospheres | planets and satellites: composition | planets and satellites: individual: WASP-12b

[1]  T. Encrenaz,et al.  A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. , 1999, Planetary and space science.

[2]  I. Skillen,et al.  Defocused transmission spectroscopy: a potential detection of sodium in the atmosphere of WASP-12b , 2014, 1410.3702.

[3]  D. Catling,et al.  AN ANALYTIC RADIATIVE–CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES , 2012, 1209.1833.

[4]  Eric B. Bechter,et al.  WASP-12b AND HAT-P-8b ARE MEMBERS OF TRIPLE STAR SYSTEMS , 2013, 1307.6857.

[5]  P. McCullough,et al.  Considerations for using Spatial Scans with WFC3 , 2012 .

[6]  Tucson,et al.  C/O RATIOS OF STARS WITH TRANSITING HOT JUPITER EXOPLANETS, , 2014, 1403.6891.

[7]  J. P. Laboratory,et al.  Ice lines, planetesimal composition and solid surface density in the solar nebula , 2008, 0806.3788.

[8]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[9]  Marcell Tessenyi,et al.  Probing the extreme planetary atmosphere of WASP-12b , 2012, 1205.4736.

[10]  Leslie Hebb,et al.  ON THE ORBIT OF EXOPLANET WASP-12b , 2010, 1003.2763.

[11]  C. Copperwheat,et al.  ULTRACAM z′-band detection of the secondary eclipse of WASP-12b , 2013, 1308.0337.

[12]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[13]  C. Copperwheat,et al.  Transmission photometry of WASP-12b: simultaneous measurement of the planetary radius in three bands , 2013, 1305.4166.

[14]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[15]  Joanna K. Barstow,et al.  CLOUDS ON THE HOT JUPITER HD189733b: CONSTRAINTS FROM THE REFLECTION SPECTRUM , 2014, 1403.6664.

[16]  Bruce A. Macintosh,et al.  Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.

[17]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[18]  G. Vasisht,et al.  THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b? , 2011, 1104.3183.

[19]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[20]  Jacob L. Bean,et al.  THE ATMOSPHERIC CIRCULATION OF THE HOT JUPITER WASP-43b: COMPARING THREE-DIMENSIONAL MODELS TO SPECTROPHOTOMETRIC DATA , 2014, 1410.2382.

[21]  L. Decin,et al.  New chemical scheme for studying carbon-rich exoplanet atmospheres , 2015, 1502.03567.

[22]  Joanna K. Barstow,et al.  Constraining the atmosphere of GJ 1214b using an optimal estimation technique , 2013, 1306.6567.

[23]  Mercedes Lopez-Morales,et al.  DAY-SIDE z′-BAND EMISSION AND ECCENTRICITY OF WASP-12b , 2009, 0912.2359.

[24]  D. Deming,et al.  A NEAR-INFRARED TRANSMISSION SPECTRUM FOR THE WARM SATURN HAT-P-12b , 2013, 1310.4796.

[25]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[26]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[27]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[28]  R. G. West,et al.  Near-UV Absorption , Chromospheric Activity , and Star-Planet Interactions in the WASP-12 system . 1 , 2022 .

[29]  J. Bean,et al.  DECIPHERING THE ATMOSPHERIC COMPOSITION OF WASP-12b: A COMPREHENSIVE ANALYSIS OF ITS DAYSIDE EMISSION , 2014, 1406.7567.

[30]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[31]  K. Cunha,et al.  CARBON AND OXYGEN ABUNDANCES IN THE HOT JUPITER EXOPLANET HOST STAR XO-2B AND ITS BINARY COMPANION , 2013, 1304.0395.

[32]  T. Guillot,et al.  A non-grey analytical model for irradiated atmospheres - I. Derivation , 2013, 1311.6597.

[33]  Andreas Seifahrt,et al.  TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.

[34]  John Asher Johnson,et al.  NEAR-INFRARED THERMAL EMISSION DETECTIONS OF A NUMBER OF HOT JUPITERS AND THE SYSTEMATICS OF GROUND-BASED NEAR-INFRARED PHOTOMETRY , 2014, 1410.4286.

[35]  Drake Deming,et al.  H2O ABUNDANCES IN THE ATMOSPHERES OF THREE HOT JUPITERS , 2014, 1407.6054.

[36]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[37]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[38]  P. McCullough,et al.  - 08 Considerations for using Spatial Scans with WFC 3 , 2012 .

[39]  Jacob L. Bean,et al.  NEW ANALYSIS INDICATES NO THERMAL INVERSION IN THE ATMOSPHERE OF HD 209458b , 2014, 1409.5336.

[40]  D. Ehrenreich,et al.  Transit spectrophotometry of the exoplanet HD 189733b - II. New Spitzer observations at 3.6 μm , 2010, 1008.2481.

[41]  A. P. Showman,et al.  The Influence of Atmospheric Dynamics on the Infrared Spectra and Light Curves of Hot Jupiters , 2006 .

[42]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[43]  Ichi Tanaka,et al.  RE-EVALUATING WASP-12b: STRONG EMISSION AT 2.315 μm, DEEPER OCCULTATIONS, AND AN ISOTHERMAL ATMOSPHERE , 2012, 1210.4836.

[44]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[45]  T. Guillot On the radiative equilibrium of irradiated planetary atmospheres , 2010, 1006.4702.

[46]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[47]  J. Lunine,et al.  Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements , 2001 .

[48]  James F. Kasting,et al.  A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b , 2011, 1110.2793.

[49]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[50]  J. Lunine,et al.  CARBON-RICH PLANET FORMATION IN A SOLAR COMPOSITION DISK , 2014, 1402.5182.

[51]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[52]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[53]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[54]  Drake Deming,et al.  EXOPLANET TRANSIT SPECTROSCOPY USING WFC3: WASP-12 b, WASP-17 b, AND WASP-19 b , 2013, 1310.2949.

[55]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[56]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[57]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[58]  L. Observatory,et al.  GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM CoRoT-1b AND WASP-12b , 2011, 1109.5179.

[59]  K. Heng,et al.  On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi‐analytical temperature–pressure profiles , 2011, 1107.1390.

[60]  T. Littenberg,et al.  Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.

[61]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[62]  Michael H. Wong,et al.  Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets , 2003 .

[63]  Nikku Madhusudhan,et al.  CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS , 2011, 1109.3183.

[64]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[65]  J. Bean,et al.  A HUBBLE SPACE TELESCOPE SEARCH FOR A SUB-EARTH-SIZED EXOPLANET IN THE GJ 436 SYSTEM , 2014, 1410.0002.

[66]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[67]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[68]  R. J. de Kok,et al.  Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b , 2014, 1404.3769.

[69]  Daniel Gautier,et al.  Enrichment in volatiles in the giant planets of the Solar System , 2004 .

[70]  M. R. Burleigh,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE NUV TRANSIT OF WASP-12b , 2015, 1502.07489.

[71]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[72]  M. Marley,et al.  THE ATMOSPHERIC CIRCULATION OF THE SUPER EARTH GJ 1214b: DEPENDENCE ON COMPOSITION AND METALLICITY , 2014, 1401.1898.

[73]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[74]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[75]  M. J. Bayarri,et al.  Calibration of ρ Values for Testing Precise Null Hypotheses , 2001 .

[76]  S. Seager,et al.  HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.

[77]  H. Jeffreys The Theory of Probability , 1922 .

[78]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[79]  David Charbonneau,et al.  THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS , 2010, 1012.0518.

[80]  Mark Swain,et al.  ON THE DETECTION OF MOLECULES IN THE ATMOSPHERE OF HD 189733b USING HST NICMOS TRANSMISSION SPECTROSCOPY , 2014, 1401.7601.

[81]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[82]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[83]  R. G. West,et al.  METALS IN THE EXOSPHERE OF THE HIGHLY IRRADIATED PLANET WASP-12b , 2010, 1005.3656.

[84]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[85]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[86]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b , 2013, 1309.5261.

[87]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[88]  Beth Biller,et al.  Stellar companions to exoplanet host stars: Lucky Imaging of transiting planet hosts , 2012, 1209.4087.