An ensemble approach to detect exudates in digital fundus images
暂无分享,去创建一个
[1] C. Sinthanayothin,et al. Automated detection of diabetic retinopathy on digital fundus images , 2002, Diabetic medicine : a journal of the British Diabetic Association.
[2] José Manuel Bravo,et al. Locating the Optic Disc in Retinal Images Using Morphological Techniques , 2013, IWBBIO.
[3] Oerip S. Santoso,et al. Color retinal image enhancement using CLAHE , 2013, International Conference on ICT for Smart Society.
[4] Kittipol Wisaeng,et al. RETRACTED: Automatic Detection of Exudates in Diabetic Retinopathy Images , 2012 .
[5] Bunyarit Uyyanonvara,et al. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods , 2008, Comput. Medical Imaging Graph..
[6] Gwénolé Quellec,et al. Exudate detection in color retinal images for mass screening of diabetic retinopathy , 2014, Medical Image Anal..
[7] J. Canny. A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] Joni-Kristian Kämäräinen,et al. The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol , 2007, BMVC.
[9] Shengwei Zhao,et al. Exudates and optic disk detection in retinal images of diabetic patients , 2015, Concurr. Comput. Pract. Exp..
[10] H. N. Hazlyna,et al. Image Enhancement Techniques Using Local, Global, Bright, Dark and Partial Contrast Stretching For Acute Leukemia Images , 2009 .
[11] Yin Aye Moe,et al. Automatic Exudate Detection with a Naive Bayes Classifier , 2008 .
[12] N. Otsu. A threshold selection method from gray level histograms , 1979 .
[13] Rajiv Raman,et al. Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2 , 2014, BMJ Open Diabetes Research and Care.