Goal-oriented adaptive surrogate construction for stochastic inversion
暂无分享,去创建一个
[1] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[2] D. Estep. A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .
[3] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[4] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[5] Barbara Wohlmuth,et al. Reduced Basis Isogeometric Mortar Approximations for Eigenvalue Problems in Vibroacoustics , 2016, 1606.01163.
[6] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[7] Tim Wildey,et al. A Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods , 2012, SIAM J. Matrix Anal. Appl..
[8] Jinglai Li,et al. Adaptive Construction of Surrogates for the Bayesian Solution of Inverse Problems , 2013, SIAM J. Sci. Comput..
[9] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[10] Tim Wildey,et al. Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty , 2015, SIAM/ASA J. Uncertain. Quantification.
[11] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[12] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[13] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[14] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[15] Tim Wildey,et al. Propagation of Uncertainties Using Improved Surrogate Models , 2012, SIAM/ASA J. Uncertain. Quantification.
[16] J. Tinsley Oden,et al. Solution verification, goal-oriented adaptive methods for stochastic advection-diffusion problems , 2010 .
[17] Nicholas Zabaras,et al. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .
[18] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[19] Patrick R. Conrad,et al. Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations , 2014, 1402.1694.
[20] Mohamed S. Ebeida,et al. VPS: VORONOI PIECEWISE SURROGATE MODELS FOR HIGH-DIMENSIONAL DATA FITTING , 2017 .
[21] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[22] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[23] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[24] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[25] Craig B. Borkowf,et al. Random Number Generation and Monte Carlo Methods , 2000, Technometrics.
[26] Serge Prudhomme,et al. Adaptive surrogate modeling for response surface approximations with application to bayesian inference , 2015, Adv. Model. Simul. Eng. Sci..
[27] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[28] Alexander Düster,et al. Book Review: Leszek Demkowicz, Computing with hp‐adaptive finite elements, Volume 1, One and two dimensional elliptic and Maxwell problems , 2007 .
[29] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[30] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[31] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[32] Qiqi Wang,et al. Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..
[33] Omri Rand,et al. Analytical Methods in Anisotropic Elasticity: with Symbolic Computational Tools , 2004 .
[34] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[35] David M. Gay,et al. Automatic Differentiation of C++ Codes for Large-Scale Scientific Computing , 2006, International Conference on Computational Science.
[36] Andrew M. Stuart,et al. Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..
[37] George E. Karniadakis,et al. Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..
[38] Troy Butler,et al. A Measure-Theoretic Interpretation of Sample Based Numerical Integration with Applications to Inverse and Prediction Problems under Uncertainty , 2017, SIAM J. Sci. Comput..
[39] Tsuyoshi Murata,et al. {m , 1934, ACML.
[40] Donald J. Estep,et al. Fast and reliable methods for determining the evolution of uncertain parameters in differential equations , 2006, J. Comput. Phys..