Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans

Doppler optical coherence tomography has the capability to measure blood flow quantitatively and in vivo. As only the axial component of the velocity can be assessed, the measurements have to be corrected for the angle of the vessels. We present a novel approach to extract quantitative flow data from circumpapillary scans in vivo on the human retina by registering the circular scan to a reference volume scan and extracting the angle directly from the volume. In addition, we perform phase unwrapping and interpolation of the flow under the assumption of a parabolic flow profile. We demonstrate the repeatability of the methods by applying it to different retinal vessels, achieving coefficients of variation of the average velocity of 3 to 8%. Results on the pulsatility and resistance index are also presented.

[1]  David Huang,et al.  Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography. , 2007, Optics letters.

[2]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[3]  Valery V. Tuchin,et al.  Optical Clearing of Tissues and Blood , 2005 .

[4]  Maciej Wojtkowski,et al.  Scanning protocols dedicated to smart velocity ranging in spectral OCT. , 2009, Optics express.

[5]  Z. Ding,et al.  Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography. , 2010, Optics express.

[6]  J. Izatt,et al.  In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. , 2003, Archives of ophthalmology.

[7]  Christoph Kolbitsch,et al.  Histogram‐based filtering for quantitative 3D retinal angiography , 2009, Journal of biophotonics.

[8]  Huihua Kenny Chiang,et al.  Imaging pulsatile retinal blood flow in human eye. , 2008, Journal of biomedical optics.

[9]  B L Petrig,et al.  Choroidal blood flow in the foveal region of the human ocular fundus. , 1994, Investigative ophthalmology & visual science.

[10]  R. Leitgeb,et al.  Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. , 2007, Optics express.

[11]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[12]  Yuankai K. Tao,et al.  Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. , 2008, Optics express.

[13]  H. Haller,et al.  Renal Resistance Index and Progression of Renal Disease , 2002, Hypertension.

[14]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[15]  D. Piao,et al.  Direct bidirectional angle-insensitive imaging of the flow signal intensity in Doppler optical coherence tomography. , 2005, Applied optics.

[16]  J. Izatt,et al.  Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. , 2008, Journal of biomedical optics.

[17]  M. Wojtkowski,et al.  Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[18]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[19]  Christoph Kolbitsch,et al.  Ultra-high-speed volumetric tomography of human retinal blood flow. , 2009, Optics express.

[20]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[21]  Wolfgang Drexler,et al.  New Developments in Optical Coherence Tomography Technology , 2010 .

[22]  E. Stefánsson,et al.  The impact of ocular blood flow in glaucoma , 2002, Progress in Retinal and Eye Research.

[23]  Lee R. Waite,et al.  Applied Biofluid Mechanics , 2007 .

[24]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[25]  M. Wolzt,et al.  Ocular blood flow and associated functional deviations in diabetic retinopathy , 1999, Diabetologia.

[26]  Leopold Schmetterer,et al.  Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. , 2008, Optics letters.

[27]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[28]  Carmen A. Puliafito,et al.  Automatic retinal blood flow calculation using spectral domain optical coherence tomography , 2007, SPIE BiOS.

[29]  Woonggyu Jung,et al.  Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography. , 2007, Optics letters.

[30]  M. Wojtkowski,et al.  Phase-resolved Doppler optical coherence tomography--limitations and improvements. , 2008, Optics letters.

[31]  Barry Cense,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. , 2003, Optics express.

[32]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[33]  Shuichi Makita,et al.  Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. , 2008, Optics letters.

[34]  Theo Lasser,et al.  Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography. , 2007, Journal of biomedical optics.