Seismic Data Interpolation and Denoising Using SVD-free Low-rank Matrix Factorization

Recent developments in rank optimization have allowed new approaches for seismic data interpolation and denoising. In this paper, we propose an approach for simultaneous seismic data interpolation and denoising using robust rank-regularized formulations. The proposed approach is suitable for large scale problems, since it avoids SVD computations by using factorized formulations. We illustrate the advantages of the new approach using a seismic line from Gulf of Suez and 5D synthetic seismic data to obtain high quality results for interpolation and denoising, a key application in exploration geophysics.

[1]  T. Leeuwen,et al.  Fast randomized full-waveform inversion with compressive sensing , 2012 .

[2]  Hassan Mansour,et al.  A robust SVD-free approach to matrix completion, with applications to interpolation of large scale data , 2013 .

[3]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[4]  Ruslan Salakhutdinov,et al.  Practical Large-Scale Optimization for Max-norm Regularization , 2010, NIPS.

[5]  K. Bube,et al.  Hybrid l 1 /l 2 minimization with applications to tomography , 1997 .

[6]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[7]  Felix J. Herrmann,et al.  Hierarchical Tucker Tensor Optimization - Applications to 4D Seismic Data Interpolation , 2013 .

[8]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[9]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[10]  Christopher Ré,et al.  Parallel stochastic gradient algorithms for large-scale matrix completion , 2013, Mathematical Programming Computation.

[11]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[12]  Michael P. Friedlander,et al.  Variational Properties of Value Functions , 2012, SIAM J. Optim..

[13]  Felix J. Herrmann,et al.  Robust inversion, dimensionality reduction, and randomized sampling , 2012, Math. Program..

[14]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[15]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .