Modelling modulus of elasticity of Pinus pinaster Ait. in northwestern Spain with standing tree acoustic measurements, tree, stand and site variables
暂无分享,去创建一个
Juan Gabriel Álvarez-González | Guillermo Riesco | Esther Merlo | J. Álvarez-González | G. Riesco | Oscar Santaclara | Madera Plus Calidad Forestal | E. Merlo | Oscar Santaclara
[1] Song-Yung Wang,et al. Evaluation of standing tree quality of Japanese cedar grown with different spacing using stress-wave and ultrasonic-wave methods , 2001, Journal of Wood Science.
[2] A. Mehlich. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant , 1984 .
[3] F. Mothe,et al. Analyse microdensitométrique appliquée au bois : méthode de traitement des données utilisée à l'Inra-ERQB (programme Cerd) , 1998 .
[4] Dafydd Gibbon,et al. 1 User’s guide , 1998 .
[5] Guillermo Iniguez,et al. Visual grading of large structural coniferous sawn timber according to Spanish standard UNE 56544 , 2007 .
[6] J. G. González,et al. Ecoregional site index models for Pinus pinaster in Galicia (northwestern Spain) , 2005 .
[7] A. R. Ek,et al. A Comparison of Competition Measures and Growth Models for Predicting Plantation Red Pine Diameter and Height Growth , 1984 .
[8] G. Gupta. A Handbook of Statistical Analyses using SAS , 2002 .
[9] F. Ishiguri,et al. Prediction of the mechanical properties of lumber by stress-wave velocity and Pilodyn penetration of 36-year-old Japanese larch trees , 2008, Holz als Roh- und Werkstoff.
[10] A. Klute,et al. Methods of soil analysis , 2015, American Potato Journal.
[11] H. Peltola,et al. Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management , 2008 .
[12] Nicholas L. Crookston,et al. User's guide to the stand prognosis model / , 1982 .
[13] S. Zhang,et al. Modeling lumber bending stiffness and strength in natural black spruce stands using stand and tree characteristics , 2007 .
[14] Robert J. Ross,et al. Acoustic testing to enhance western forest values and meet customer wood quality needs , 2005 .
[15] John R. Moore,et al. Within- and between-stand variation in selected properties of Sitka spruce sawn timber in the UK: implications for segregation and grade recovery , 2013, Annals of Forest Science.
[16] Gregory J Searles,et al. The effects of site and stand factors on the tree and wood quality of Sitka spruce growing in the United Kingdom. , 2009 .
[17] H. Polge. Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d'échantillons prélevés à la tarière sur des arbres vivants : applications dans les domaines Technologique et Physiologique , 1966 .
[18] Robert J. Ross,et al. Acoustic Evaluation of Wood Quality in Standing Trees. Part I. Acoustic Wave Behavior , 2007 .
[19] Matthew J. Waghorn,et al. Influence of tree morphology, genetics, and initial stand density on outerwood modulus of elasticity of 17-year-old Pinus radiata , 2007 .
[20] M. Watt,et al. The effects of genotype and spacing on Pinus radiata [D. Don] corewood stiffness in an 11-year old experiment , 2005 .
[21] Robert J. Ross,et al. Several Nondestructive Evaluation Techniques for Assessing Stiffness and MOE of Small-Diameter Logs , 2001 .
[22] Matthew J. Waghorn,et al. Influence of initial stand density and genotype on longitudinal variation in modulus of elasticity for 17-year-old Pinus radiata , 2007 .
[23] S. Shaler,et al. Microfibril angle variation in red pine (Pines resinosa Ait.) and its relation to the strength and stiffness of early juvenile wood , 2003 .
[24] Honorio F. Carino,et al. Effect of Stand Density on Flexural Properties of Lumber From Two 35-Year-Old Loblolly Pine Plantations , 2007 .
[25] John R Moore,et al. Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata dynamic modulus of elasticity , 2006 .
[26] G. Riesco Muñoz,et al. CARACTERÍSTICAS FÍSICAS DE LA MADERA DE PINO PROCEDENTE DE RALEOS EN EL NOROESTE DE ESPAÑA PHYSICAL PROPERTIES OF WOOD FROM THINNED PINES IN NORTHWEST SPAIN , 2007 .
[27] Song-Yung Wang,et al. Dynamic modulus of elasticity and bending properties of large beams of Taiwan-grown Japanese cedar from different plantation spacing sites , 1998, Journal of Wood Science.
[28] Richard F. Daniels,et al. A comparison of competition measures for predicting growth of loblolly pine trees , 1986 .
[29] Robert J. Ross,et al. Nondestructive evaluation of standing trees with a stress wave method , 2007 .
[30] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[31] P. J. Pellicane,et al. Quality of timber products from Norway spruce , 1995, Wood Science and Technology.
[32] Brian K. Brashaw,et al. Diameter effect on stress-wave evaluation of modulus of elasticity of logs , 2004 .
[33] T. Pukkala,et al. Competition indices and the prediction of radial growth in Scots pine. , 1987 .
[34] N. Schermann,et al. Genetic control of stiffness of standing Douglas fir; from the standing stem to the standardised wood sample, relationships between modulus of elasticity and wood density parameters. Part II , 1999 .
[35] D. Huber,et al. Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile loblolly pine in the southeastern USA , 2007 .
[36] Y. Lei,et al. Models for predicting lumber bending MOR and MOE based on tree and stand characteristics in black spruce , 2005, Wood Science and Technology.
[37] H. J. Larsen,et al. DS/ENV 1995-1-1 NAD National Application Document for Eurocode 5: Design of Timber Structures, Part 1-1: General Rules and Rules for Buildings , 1994 .
[38] P. J. Pellicane,et al. Quality of timber products from Norway spruce , 1995, Wood Science and Technology.
[39] M. J. Gaspar,et al. Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster , 2008 .
[40] M. J. Gaspar,et al. Genetic correlations between wood quality traits of Pinus pinaster Ait , 2008, Annals of Forest Science.
[41] M. Watt,et al. Modelling the influence of environment and stand characteristics on basic density and modulus of elasticity for young Pinus radiata and Cupressus lusitanica , 2008 .
[42] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[43] E. Hermoso,et al. Mechanical properties of structural maritime pine sawn timber from Galicia ( Pinus pinaster Ait. ssp. atlantica ) , 2009 .
[44] R. Z. Arregui,et al. Variabilidad de parámetros de calidad de madera entre y dentro de procedencias de Pseudotsuga menziesII , 2008 .
[45] S. Zhang,et al. Impact of Initial Spacing on Plantation Black Spruce Lumber Grade Yield, Bending Properties, and MSR Yield , 2002 .
[46] Manuel Rodríguez Guitián. Aplicación de criterios botánicos para a proposta de modelos de xestión sustentable das masas arborizadas autóctonas do subsector galaico-asturiano septentrional , 2004 .
[47] M. Watt,et al. Influence of the main and interactive effects of site, stand stocking and clone on Pinus radiata D. Don corewood modulus of elasticity , 2008 .