Risk factors and prediction of very short term versus short/intermediate term post-stroke mortality: A data mining approach

[1]  F. Mahoney,et al.  FUNCTIONAL EVALUATION: THE BARTHEL INDEX. , 2018, Maryland state medical journal.

[2]  Christophe G. Giraud-Carrier,et al.  Results on mining NHANES data: A case study in evidence-based medicine , 2013, Comput. Biol. Medicine.

[3]  K. Rockwood,et al.  Frailty in older adults: Implications for end-of-life care , 2013, Cleveland Clinic Journal of Medicine.

[4]  N. Morgenthaler,et al.  Copeptin, Procalcitonin and Routine Inflammatory Markers–Predictors of Infection after Stroke , 2012, PloS one.

[5]  L. Lisabeth,et al.  Computed Tomography Findings for Intracerebral Hemorrhage Have Little Incremental Impact on Post-Stroke Mortality Prediction Model Performance , 2012, Cerebrovascular Diseases.

[6]  B. Kissela,et al.  Abstract 30: The Frailty Index: A Novel Predictor Of Stroke Outcomes , 2012, Stroke.

[7]  Riccardo Bellazzi,et al.  Predictive data mining in clinical medicine: a focus on selected methods and applications , 2011, WIREs Data Mining Knowl. Discov..

[8]  M. Loeb,et al.  Aging, frailty and age-related diseases , 2010, Biogerontology.

[9]  Gerhard Schroth,et al.  Predictors of early mortality after acute ischaemic stroke. , 2010, Swiss medical weekly.

[10]  G. Andersen,et al.  Sex-Related Differences in Quality of Care and Short-Term Mortality Among Patients With Acute Stroke in Denmark: A Nationwide Follow-Up Study , 2009, Stroke.

[11]  J. Montaner,et al.  Inflammation markers and prediction of post-stroke vascular disease recurrence: The MITICO study , 2009, Journal of Neurology.

[12]  Kent A Weigel,et al.  Comparison of classification methods for detecting associations between SNPs and chick mortality , 2009, Genetics Selection Evolution.

[13]  G. Khayat,et al.  Prediction of the survival and functional ability of severe stroke patients after ICU therapeutic intervention , 2008, BMC neurology.

[14]  Blaz Zupan,et al.  Predictive data mining in clinical medicine: Current issues and guidelines , 2008, Int. J. Medical Informatics.

[15]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[16]  P. Sandercock,et al.  Glucose-potassium-insulin infusions in the management of post-stroke hyperglycaemia: the UK Glucose Insulin in Stroke Trial (GIST-UK) , 2007, The Lancet Neurology.

[17]  Barry Robson,et al.  Data mining and clinical data repositories: Insights from a 667, 000 patient data set , 2006, Comput. Biol. Medicine.

[18]  A. Sagie,et al.  Value of echocardiography for stroke and mortality prediction following coronary artery bypass grafting. , 2006, Interactive cardiovascular and thoracic surgery.

[19]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[20]  Sara Espinoza,et al.  Frailty in older adults: insights and interventions. , 2005, Cleveland Clinic journal of medicine.

[21]  Andrew Kusiak,et al.  Predicting survival time for kidney dialysis patients: a data mining approach , 2005, Comput. Biol. Medicine.

[22]  Simon Parsons,et al.  Principles of Data Mining by David J. Hand, Heikki Mannila and Padhraic Smyth, MIT Press, 546 pp., £34.50, ISBN 0-262-08290-X , 2004, The Knowledge Engineering Review.

[23]  M. Davidsen,et al.  Long-Term Survival and Causes of Death After Stroke , 2001, Stroke.

[24]  Cassandra Wasson,et al.  Cardiovascular , 1999, Blood Purification.

[25]  J. Concato,et al.  A simulation study of the number of events per variable in logistic regression analysis. , 1996, Journal of clinical epidemiology.

[26]  G. Murray,et al.  Comparison of neurological scales and scoring systems for acute stroke prognosis. , 1996, Stroke.

[27]  J. Pruvo,et al.  Early predictors of death and disability after acute cerebral ischemic event. , 1995, Stroke.

[28]  H. Feys,et al.  The European Stroke Scale , 1994, Stroke.

[29]  S. Lemeshow,et al.  Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. , 1993, JAMA.

[30]  D. Pendergast,et al.  Cardiovascular, neuromuscular, and metabolic alterations with age leading to frailty. , 1993, Journal of gerontology.

[31]  N. Takahashi Aging , 1992, Cell.

[32]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[33]  W. Knaus,et al.  Short-term mortality predictions for critically ill hospitalized adults: science and ethics. , 1991, Science.

[34]  J. Bamford,et al.  Classification and natural history of clinically identifiable subtypes of cerebral infarction , 1991, The Lancet.

[35]  J Bamford,et al.  The frequency, causes and timing of death within 30 days of a first stroke: the Oxfordshire Community Stroke Project. , 1990, Journal of neurology, neurosurgery, and psychiatry.

[36]  P A Wolf,et al.  Risk factors for stroke. , 1985, Stroke.

[37]  H. Akaike A new look at the statistical model identification , 1974 .

[38]  R. Ferber Handbook of Marketing Research , 1974 .

[39]  Spectroscopic Binaries,et al.  THE FREQUENCY OF , 2016 .

[40]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[41]  J. Swieten Interobserver Agreement for the Assessment of Handicap in Stroke Patients , 2005 .

[42]  C. Ashton,et al.  Short-term, intermediate-term, and long-term mortality in patients hospitalized for stroke. , 2003, Journal of clinical epidemiology.

[43]  Mark A. Hall,et al.  Correlation-based Feature Selection for Machine Learning , 2003 .

[44]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[45]  P. Wolf,et al.  Risk factors : Prevention and Rehabilitation of Stroke , 1997 .

[46]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[47]  D. Marchant,et al.  Risk factors. , 1994, Obstetrics and gynecology clinics of North America.

[48]  R. Bloch,et al.  Interobserver agreement for the assessment of handicap in stroke patients. , 1988, Stroke.